Advanced Search
Article Contents

Quantitative Analysis of Meso-β-scale Convective Cells and Anvil Clouds over North China


doi: 10.1007/s00376-010-9154-8

  • This paper proposes several quantitative characteristics to study convective systems using observations from Doppler weather radars and geostationary satellites. Specifically, in order to measure the convective intensity of each system, a new index, named the ``Convective Intensity Ratio'' (CIR), is defined as the ratio between the area of strong radar echoes at the upper level and the size of the convective cell itself. Based on these quantitative characteristics, the evolution of convective cells, surface rainfall intensity, rainfall area and convectively generated anvil clouds can be studied, and the relationships between them can also be analyzed. After testing nine meso-β-scale convective systems over North China during 2006--2007, the results were as follows: (1) the CIR was highly correlated with surface rainfall intensity, and the correlation reached a maximum when the CIR led rainfall intensity by 6--30 mins. The maximum CIR could be at most ~30 mins before the maximum rainfall intensity. (2) Convective systems with larger maximum CIRs usually had colder cloud-tops. (3) The maximum area of anvil cloud appeared 0.5--1.5 h after rainfall intensity began to weaken. The maximum area of anvil cloud and the time lag between maximum rainfall intensity and the maximum area of anvil cloud both increased with the CIR.
  • [1] Yang LI, Yubao LIU, Rongfu SUN, Fengxia GUO, Xiaofeng XU, Haixiang XU, 2023: Convective Storm VIL and Lightning Nowcasting Using Satellite and Weather Radar Measurements Based on Multi-Task Learning Models, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 887-899.  doi: 10.1007/s00376-022-2082-6
    [2] WU Chong, and LIU Liping, 2014: Comparison of the Observation Capability of an X-band Phased-array Radar with an X-band Doppler Radar and S-band Operational Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 814-824.  doi: 10.1007/s00376-013-3072-5
    [3] Yuanyuan ZUO, Zhiqun HU, Shujie YUAN, Jiafeng ZHENG, Xiaoyan YIN, Boyong LI, 2022: Identification of Convective and Stratiform Clouds Based on the Improved DBSCAN Clustering Algorithm, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2203-2212.  doi: 10.1007/s00376-021-1223-7
    [4] Sung-Ho SUH, Eun-Ho CHOI, Hong-Il KIM, Woonseon JUNG, 2023: Possibility of Solid Hydrometeor Growth Zone Identification Using Radar Spectrum Width, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 317-332.  doi: 10.1007/s00376-022-1472-0
    [5] Liangxiao SUN, Xiaoyong ZHUGE, Yuan WANG, 2017: Favorable Environments for the Occurrence of Overshooting Tops in Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 532-544.  doi: 10.1007/s00376-016-6122-y
    [6] Li Jun, Wang Luyi, Zhou Fengxian, 1993: Convective and Stratiform Cloud Rainfall Estimation from Geostationary Satellite Data, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 475-480.  doi: 10.1007/BF02656972
    [7] Yi-Xuan SHOU, Feng LU, Hui LIU, Peng CUI, Shaowen SHOU, Jian LIU, 2019: Satellite-based Observational Study of the Tibetan Plateau Vortex: Features of Deep Convective Cloud Tops, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 189-205.  doi: 10.1007/s00376-018-8049-y
    [8] Jiang HUANGFU, Zhiqun HU, Jiafeng ZHENG, Lirong WANG, Yongjie ZHU, 2024: Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3039-0
    [9] Ma Zhenhua, Liu Guosheng, Liu Wei, 1985: PRINCIPAL STUDY OF THE FM RADAR FOR IMPROVING THE ACCURACY IN QUANTITATIVE RAINFALL RATE MEASUREMENT, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 341-346.  doi: 10.1007/BF02677250
    [10] Lei ZHU, Zhiyong MENG, Yonghui WENG, Fuqing ZHANG, 2022: Assimilation of All-sky Geostationary Satellite Infrared Radiances for Convection-Permitting Initialization and Prediction of Hurricane Joaquin (2015), ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1859-1872.  doi: 10.1007/s00376-022-2015-4
    [11] Chunlin HUANG, Hongrong SHI, Ling GAO, Mengqi LIU, Qixiang CHEN, Disong FU, Shu WANG, Yuan YUAN, Xiang′ao XIA, 2022: Fengyun-4 Geostationary Satellite-Based Solar Energy Nowcasting System and Its Application in North China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1316-1328.  doi: 10.1007/s00376-022-1464-0
    [12] Yujie PAN, Mingjun WANG, 2019: Impact of the Assimilation Frequency of Radar Data with the ARPS 3DVar and Cloud Analysis System on Forecasts of a Squall Line in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 160-172.  doi: 10.1007/s00376-018-8087-5
    [13] Xiaojian ZHENG, Xiquan DONG, Dale M. WARD, Baike XI, Peng WU, Yuan WANG, 2022: Aerosol-Cloud-Precipitation Interactions in a Closed-cell and Non-homogenous MBL Stratocumulus Cloud, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2107-2123.  doi: 10.1007/s00376-022-2013-6
    [14] Jo-Han LEE, Dong-Kyou LEE, Hyun-Ha LEE, Yonghan CHOI, Hyung-Woo KIM, 2010: Radar Data Assimilation for the Simulation of Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1025-1042.  doi: 10.1007/s00376-010-9162-8
    [15] WANG Gaili, WONG Waikin, LIU Liping, WANG Hongyan, 2013: Application of Multi-Scale Tracking Radar Echoes Scheme in Quantitative Precipitation Nowcasting, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 448-460.  doi: 10.1007/s00376-012-2026-7
    [16] Haibo ZOU, Shanshan WU, Miaoxia TIAN, 2023: Radar Quantitative Precipitation Estimation Based on the Gated Recurrent Unit Neural Network and Echo-Top Data, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1043-1057.  doi: 10.1007/s00376-022-2127-x
    [17] Ma Zhenhua, 1985: THE EFFECTS OF EARTH PARTIAL SPECULAR REFLECTION ON THE QUANTITATIVE RAINFALL-RATE MEASUREMENTS BY RADAR, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 104-111.  doi: 10.1007/BF03179742
    [18] GUO Xueliang, FU Danhong, LI Xingyu, HU Zhaoxia, LEI Henchi, XIAO Hui, HONG Yanchao, 2015: Advances in Cloud Physics and Weather Modification in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 230-249.  doi: 10.1007/s00376-014-0006-9
    [19] Li Jun, Zhou Fengxian, 1990: Computer Identification of Multispectral Satellite Cloud Imagery, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 366-375.  doi: 10.1007/BF03179768
    [20] Zhang Mingli, Garrett G. Campbell, 1992: Comparison of Satellite and Ship Observations for Total Cloud Amount, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 63-72.  doi: 10.1007/BF02656931

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2010
Manuscript revised: 10 September 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Quantitative Analysis of Meso-β-scale Convective Cells and Anvil Clouds over North China

  • 1. Department of Atmospheric Science, School of Physics, Peking University, Beijing 100871,Department of Atmospheric Science, School of Physics, Peking University, Beijing 100871,College of Information Science and Engineering, Ocean University of China, Qingdao 266100, Department of Atmospheric Science, School of Physics, Peking University, Beijing 100871,National Meteorological Center of CMA, Beijing 100081,Department of Atmospheric Science, School of Physics, Peking University, Beijing 100871

Abstract: This paper proposes several quantitative characteristics to study convective systems using observations from Doppler weather radars and geostationary satellites. Specifically, in order to measure the convective intensity of each system, a new index, named the ``Convective Intensity Ratio'' (CIR), is defined as the ratio between the area of strong radar echoes at the upper level and the size of the convective cell itself. Based on these quantitative characteristics, the evolution of convective cells, surface rainfall intensity, rainfall area and convectively generated anvil clouds can be studied, and the relationships between them can also be analyzed. After testing nine meso-β-scale convective systems over North China during 2006--2007, the results were as follows: (1) the CIR was highly correlated with surface rainfall intensity, and the correlation reached a maximum when the CIR led rainfall intensity by 6--30 mins. The maximum CIR could be at most ~30 mins before the maximum rainfall intensity. (2) Convective systems with larger maximum CIRs usually had colder cloud-tops. (3) The maximum area of anvil cloud appeared 0.5--1.5 h after rainfall intensity began to weaken. The maximum area of anvil cloud and the time lag between maximum rainfall intensity and the maximum area of anvil cloud both increased with the CIR.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return