Advanced Search
Article Contents

The Vertical Structures of Atmospheric Temperature Anomalies Associated with El Nino Simulated by the LASG/IAP AGCM: Sensitivity to Convection Schemes


doi: 10.1007/s00376-010-9167-3

  • The vertical structures of atmospheric temperature anomalies associated with El Nino are simulated with a spectrum atmospheric general circulation model developed by LASG/IAP (SAMIL). Sensitivity of the model's response to convection scheme is discussed. Two convection schemes, i.e., the revised Zhang and Macfarlane (RZM) and Tiedtke (TDK) convection schemes, are employed in two sets of AMIP-type (Atmospheric Model Intercomparison Project) SAMIL simulations, respectively. Despite some deficiencies in the upper troposphere, the canonical El Nino-related temperature anomalies characterized by a prevailing warming throughout the tropical troposphere are well reproduced in both simulations. The performance of the model in reproducing temperature anomalies in ``atypical" El Nino events is sensitive to the convection scheme. When employing the RZM scheme, the warming center over the central-eastern tropical Pacific and the strong cooling in the western tropical Pacific at sea surface level are underestimated. The quadru-pole temperature anomalies in the middle and upper troposphere are also obscured. The result of employing the TDK scheme resembles the reanalysis and hence shows a better performance. The simulated large-scale circulations associated with atypical El Nino events are also sensitive to the convection schemes. When employing the RZM scheme, SAMIL failed in capturing the classical Southern Oscillation pattern. In accordance with the unrealistic anomalous Walker circulation and the upper tropospheric zonal wind changes, the deficiencies of the precipitation simulation are also evident. These results demonstrate the importance of convection schemes in simulating the vertical structure of atmospheric temperature anomalies associated with El Nino and should serve as a useful reference for future improvement of SAMIL.
  • [1] Zhang Weiqing, Qian Yongfu, 2001: The Relationships between Variations of Sea SurfaceTemperature Anomalies in the Key Ocean Areasand the Precipitation and SurfaceAir Temperature in China, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 294-308.  doi: 10.1007/s00376-001-0021-5
    [2] ZHAO Chongbo, ZHOU Tianjun, SONG Lianchun, REN Hongli, 2014: The Boreal Summer Intraseasonal Oscillation Simulated by Four Chinese AGCMs Participating in the CMIP5 Project, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1167-1180.  doi: 10.1007/s00376-014-3211-7
    [3] MA Zhanhong, FEI Jianfang, HUANG Xiaogang, CHENG Xiaoping, 2014: Impacts of the Lowest Model Level Height on Tropical Cyclone Intensity and Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 421-434.  doi: 10.1007/s00376-013-3044-9
    [4] Ni Yunqi, S. E. Zebiak, M. A. Cane, D. M. Straus, 1996: Comparison of Surface Wind Stress Anomalies over the Tropical Pacific Simulated by an AGCM and by a Simple Atmospheric Model, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 229-243.  doi: 10.1007/BF02656865
    [5] JIA Xiaolong, LI Chongyin, LING Jian, Chidong ZHANG, 2008: Impacts of a GCM's Resolution on MJO Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 139-156.  doi: 10.1007/s00376-008-0139-9
    [6] LI Weiping, SUN Shufen, WANG Biao, LIU Xin, 2009: Numerical Simulation of Sensitivities of Snow Melting to Spectral Composition of the Incoming Solar Radiation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 403-412.  doi: 10.1007/s00376-009-0403-7
    [7] WANG Zaizhi, WU Guoxiong, WU Tongwen, YU Rucong, 2004: Simulation of Asian Monsoon Seasonal Variations with Climate Model R42L9/LASG, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 879-889.  doi: 10.1007/BF02915590
    [8] Zeng Qingcun, Dai Yongjiu, Xue Feng, 1998: Simulation of the Asian Monsoon by IAP AGCM Coupled with an Advanced Land Surface Model (IAP94), ADVANCES IN ATMOSPHERIC SCIENCES, 15, 1-16.  doi: 10.1007/s00376-998-0013-9
    [9] WU Lingyun, CHAO Jiping, FU Congbin, PAN Xiaoling, 2003: On a Simple Dynamics Model of Interaction between Oasis and Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 775-780.  doi: 10.1007/BF02915402
    [10] Yazhou ZHANG, Zhijie LIAO, Yaocun ZHANG, Feng NIE, 2016: Characteristics of the Asian-Pacific Oscillation in Boreal Summer Simulated by BCC_CSM with Different Horizontal Resolutions, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1401-1412.  doi: 10.1007/s00376-016-5266-0
    [11] YANG Jing, BAO Qing, WANG Xiaocong, ZHOU Tianjun, 2012: The Tropical Intraseasonal Oscillation in SAMIL Coupled and Uncoupled General Circulation Models, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 529-543.  doi: 10.1007/s00376-011-1087-3
    [12] Lin DENG, Wenhua GAO, Yihong DUAN, Yuqing WANG, 2019: Microphysical Properties of Rainwater in Typhoon Usagi (2013): A Numerical Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 510-526.  doi: 10.1007/s00376-019-8170-6
    [13] Shuai YANG, Xiba TANG, Shuixin ZHONG, Bin CHEN, Yushu ZHOU, Shouting GAO, Chengxin WANG, 2019: Convective Bursts Episode of the Rapidly Intensified Typhoon Mujigae (2015), ADVANCES IN ATMOSPHERIC SCIENCES, 36, 541-556.  doi: 10.1007/s00376-019-8142-x
    [14] Xue Feng, Bi Xunqiang, Lin Yihua, 2001: Modelling the Global Monsoon System by IAP 9L AGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 404-412.  doi: 10.1007/BF02919319
    [15] Bo LU, Hong-Li REN, Rosie EADE, Martin ANDREWS, 2018: Indian Ocean SST modes and Their Impacts as Simulated in BCC_CSM1.1(m) and HadGEM3, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1035-1048.  doi: 10.1007/s00376-018-7279-3
    [16] Xianghui FANG, Fei ZHENG, 2018: Simulating Eastern- and Central-Pacific Type ENSO Using a Simple Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 671-681.  doi: 10.1007/s00376-017-7209-9
    [17] DING Yihui, LIU Yiming, SHI Xueli, LI Qingquan, LI Qiaoping, LIU Yan, 2006: Multi-Year Simulations and Experimental Seasonal Predictions for Rainy Seasons inChina byUsing a Nested Regional ClimateModel (RegCM NCC) Part II: The Experimental Seasonal Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 487-503.  doi: 10.1007/s00376-006-0323-8
    [18] ZHANG Wen, HUANG Yao, SUN Wenjuan, YU Yongqiang, 2007: Simulating Crop Net Primary Production in China from 2000 to 2050 by Linking the Crop-C model with a FGOALS's Model Climate Change Scenario, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 845-854.  doi: 10.1007/s00376-007-0845-8
    [19] Wang Huijun, 1997: The Effect of Heating Anomaly on the Asian Circulation-A GCM Experiment, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 81-86.  doi: 10.1007/s00376-997-0046-5
    [20] Lin Wenshi, Wang Anyu, Wu Chisheng, Fong Soi Kun, Ku Chimeng, 2001: A Case Modeling of Sea-Land Breeze in Macao and Its Neighborhood, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1231-1240.  doi: 10.1007/s00376-001-0037-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 September 2010
Manuscript revised: 10 September 2010
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Vertical Structures of Atmospheric Temperature Anomalies Associated with El Nino Simulated by the LASG/IAP AGCM: Sensitivity to Convection Schemes

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate University of Chinese Academy of Sciences, Beijing 100049, Laboratoire de Meteorologie Dynamique/CNRS, Universite Paris 6, France,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: The vertical structures of atmospheric temperature anomalies associated with El Nino are simulated with a spectrum atmospheric general circulation model developed by LASG/IAP (SAMIL). Sensitivity of the model's response to convection scheme is discussed. Two convection schemes, i.e., the revised Zhang and Macfarlane (RZM) and Tiedtke (TDK) convection schemes, are employed in two sets of AMIP-type (Atmospheric Model Intercomparison Project) SAMIL simulations, respectively. Despite some deficiencies in the upper troposphere, the canonical El Nino-related temperature anomalies characterized by a prevailing warming throughout the tropical troposphere are well reproduced in both simulations. The performance of the model in reproducing temperature anomalies in ``atypical" El Nino events is sensitive to the convection scheme. When employing the RZM scheme, the warming center over the central-eastern tropical Pacific and the strong cooling in the western tropical Pacific at sea surface level are underestimated. The quadru-pole temperature anomalies in the middle and upper troposphere are also obscured. The result of employing the TDK scheme resembles the reanalysis and hence shows a better performance. The simulated large-scale circulations associated with atypical El Nino events are also sensitive to the convection schemes. When employing the RZM scheme, SAMIL failed in capturing the classical Southern Oscillation pattern. In accordance with the unrealistic anomalous Walker circulation and the upper tropospheric zonal wind changes, the deficiencies of the precipitation simulation are also evident. These results demonstrate the importance of convection schemes in simulating the vertical structure of atmospheric temperature anomalies associated with El Nino and should serve as a useful reference for future improvement of SAMIL.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return