Advanced Search
Article Contents

Water Vapor and Cloud Radiative Forcings over the Pacific Ocean Simulated by the LASG/IAP AGCM: Sensitivity to Convection Schemes


doi: 10.1007/s00376-010-9205-1

  • Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASG/IAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang--McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nino warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Nino warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nino warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are iscussed.
  • [1] XIE Xiaoning, LIU Xiaodong, 2013: Analytical Studies of the Cloud Droplet Spectral Dispersion Influence on the First Indirect Aerosol Effect, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1313-1319.  doi: 10.1007/s00376-012-2141-5
    [2] Lei WANG, Qing BAO, Wei-Chyung WANG, Yimin LIU, Guo-Xiong WU, Linjiong ZHOU, Jiandong LI, Hua GONG, Guokui NIAN, Jinxiao LI, Xiaocong WANG, Bian HE, 2019: LASG Global AGCM with a Two-moment Cloud Microphysics Scheme: Energy Balance and Cloud Radiative Forcing Characteristics, ADVANCES IN ATMOSPHERIC SCIENCES, , 697-710.  doi: 10.1007/s00376-019-8196-9
    [3] Feng ZHANG, Xin-Zhong LIANG, ZENG Qingcun, Yu GU, and Shenjian SU, 2013: Cloud-Aerosol-Radiation (CAR) ensemble monitoring system: Overall accuracy and efficiency, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 955-973.  doi: 10.1007/s00376-012-2171-z
    [4] SUN Zhian, WANG Xiaoyun, ZENG Xianning, 2006: Radiative Forcing of SO2 and NOx: A Case Study in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 317-322.  doi: 10.1007/s00376-006-0317-6
    [5] Zuohao CAO, Ronald E.STEWART, M.K.YAU, 2004: A New Perspective of the Physical Processes Associated with the Clear-Sky Greenhouse Effect over High Latitudes, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 171-180.  doi: 10.1007/BF02915703
    [6] Jie SUN, Michael SECOR, Ming CAI, Xiaoming HU, 2024: A Quasi-Linear Relationship between Planetary Outgoing Longwave Radiation and Surface Temperature in a Radiative-Convective-Transportive Climate Model of a Gray Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 8-18.  doi: 10.1007/s00376-023-2386-1
    [7] Gao Xuejie, Zhao Zongci, Ding Yihui, Huang Ronghui, Filippo Giorgi, 2001: Climate Change due to Greenhouse Effects in China as Simulated by a Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1224-1230.  doi: 10.1007/s00376-001-0036-y
    [8] Zhang Minghua, Yu Rucong, Yu Yongqiang, 2001: Comparing Cloud Radiative Properties between the Eastern China and the Indian Monsoon Region, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1090-1102.  doi: 10.1007/s00376-001-0025-1
    [9] FENG Sha, LIU Qi, FU Yun-Fei, 2011: Cloud Variations under Subtropical High Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 623-635.  doi: 10.1007/s00376-010-9194-0
    [10] Haibo WANG, Hua ZHANG, Bing XIE, Xianwen JING, Jingyi HE, Yi LIU, 2022: Evaluating the Impacts of Cloud Microphysical and Overlap Parameters on Simulated Clouds in Global Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2172-2187.  doi: 10.1007/s00376-021-0369-7
    [11] GUO Lanli, ZHANG Yaocun, WANG Bin, LI Lijuan, ZHOU Tianjun, BAO Qing, 2008: Simulations of the East Asian Subtropical Westerly Jet by LASG/IAP AGCMs, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 447-457.  doi: 10.1007/s00376-008-0447-0
    [12] WANG Zaizhi, MAO Jiangyu, WU Guoxiong, 2008: The Wavenumber-Frequency Characteristics of the Tropical Waves in an Aqua-Planet GCM, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 541-554.  doi: 10.1007/s00376-008-0541-3
    [13] Gao Xuejie, Zhao Zongci, Filippo Giorgi, 2002: Changes of Extreme Events in Regional Climate Simulations over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 927-942.  doi: 10.1007/s00376-002-0056-2
    [14] YU Yongqiang, ZHI Hai, WANG Bin, WAN Hui, LI Chao, LIU Hailong, LI Wei, ZHENG Weipeng, ZHOU Tianjun, 2008: Coupled Model Simulations of Climate Changes in the 20th Century and Beyond, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 641-654.  doi: 10.1007/s00376-008-0641-0
    [15] Chen ZHOU, Yincheng LIU, Quan WANG, 2022: Calculating the Climatology and Anomalies of Surface Cloud Radiative Effect Using Cloud Property Histograms and Cloud Radiative Kernels, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2124-2136.  doi: 10.1007/s00376-021-1166-z
    [16] CHANG Wenyuan, LIAO Hong, WANG Huijun, 2009: Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in eastern China over 1951-2000, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 748-762.  doi: 10.1007/s00376-009-9032-4
    [17] ZHANG Hua, ZHANG Ruoyu, and SHI Guangyu, 2013: An updated estimation of radiative forcing due to CO2 and its effect on global surface temperature change, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1017-1024.  doi: 10.1007/s00376-012-2204-7
    [18] FENG Qian, CUI Songxue, ZHAO Wei, 2015: Effect of Particle Shape on Dust Shortwave Direct Radiative Forcing Calculations Based on MODIS Observations for a Case Study, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1266-1276.  doi: 10.1007/s00376-015-4235-3
    [19] LI Shu, WANG Tijian, ZHUANG Bingliang, HAN Yong, 2009: Indirect Radiative Forcing and Climatic Effect of the Anthropogenic Nitrate Aerosol on Regional Climate of China, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 543-552.  doi: 10.1007/s00376-009-0543-9
    [20] Hui XU, Jianping GUO, Jian LI, Lin LIU, Tianmeng CHEN, Xiaoran GUO, Yanmin LYU, Ding WANG, Yi HAN, Qi CHEN, Yong ZHANG, 2021: The Significant Role of Radiosonde-measured Cloud-base Height in the Estimation of Cloud Radiative Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1552-1565.  doi: 10.1007/s00376-021-0431-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2011
Manuscript revised: 10 January 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Water Vapor and Cloud Radiative Forcings over the Pacific Ocean Simulated by the LASG/IAP AGCM: Sensitivity to Convection Schemes

  • 1. The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Cooperative Institute for Environmental Studies/University of Colorado & Earth System Research Laboratory/NOAA, Boulder, Colorado, USA,The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASG/IAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang--McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Nino warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Nino warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Nino warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are iscussed.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return