Advanced Search
Article Contents

Water Cycle and Microphysical Processes Associated with a Mesoscale Convective Vortex System in the Dabie Mountain Area


doi: 10.1007/s00376-011-0089-5

  • The water vapor budget and the cloud microphysical processes associated with a heavy rainfall system in the Dabie Mountain area in June 2008 were analyzed using mesoscale reanalysis data (grid resolution 0.03o× 0.03o, 22 vertical layers, 1-h intervals), generated by amalgamating the local analysis and prediction system (LAPS). The contribution of each term in the water vapor budget formula to precipitation was evaluated. The characteristics of water vapor budget and water substances in various phase states were evaluated and their differences in heavy and weak rainfall areas were compared. The precipitation calculated from the total water vapor budget accounted for 77% of actual precipitation; surface evaporation is another important source of water vapor. Water vapor within the domain of interest mainly came from the lower level along the southern boundary and the lower--middle level along the western boundary. This altitude difference for water vapor flux was caused by different weather systems. The decrease of local water vapor in the middle--lower layer in the troposphere during the system development stage also contributed to precipitation. The strength and the layer thickness of water vapor convergence and the content of various water substances in the heavy rainfall areas were obviously larger than in the weak rainfall areas. The peak values of lower-level water vapor convergence, local water vapor income, and the concentration of cloud ice all preceded the heaviest surface rainfall by a few hours.
  • [1] PAN Yang, YU Rucong, LI Jian, XU Youping, 2008: A Case Study on the Role of Water Vapor from Southwest China in Downstream Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 563-576.  doi: 10.1007/s00376-008-0563-x
    [2] DONG Haiping, ZHAO Sixiong, ZENG Qingcun, 2007: A Study of Influencing Systems and Moisture Budget in a Heavy Rainfall in Low Latitude Plateau in China during Early Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 485-502.  doi: 10.1007/s00376-007-0485-z
    [3] HOU Tuanjie, Fanyou KONG, CHEN Xunlai, LEI Hengchi, HU Zhaoxia, 2015: Evaluation of Radar and Automatic Weather Station Data Assimilation for a Heavy Rainfall Event in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 967-978.  doi: 10.1007/s00376-014-4155-7
    [4] Ji-Hyun HA, Hyung-Woo KIM, Dong-Kyou LEE, 2011: Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 573-590.  doi: 10.1007/s00376-010-0035-y
    [5] Ji-Hyun HA, Dong-Kyou LEE, 2012: Effect of Length Scale Tuning of Background Error in WRF-3DVAR System on Assimilation of High-Resolution Surface Data for Heavy Rainfall Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1142-1158.  doi: 10.1007/s00376-012-1183-z
    [6] Jiwon Hwang, Dong-Hyun Cha, Donghyuck Yoon, Tae-Young Goo, Sueng-Pil Jung, 2024: Effects of Initial and Boundary Conditions on Heavy Rainfall Simulation over the Yellow Sea and the Korean Peninsula: Comparison of ECMWF and NCEP Analysis Data Effects and Verification with Dropsonde Observation, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3232-9
    [7] Cheng Minghu, He Huizhong, Mao Dongyan, Qi Yanjun, Cui Zhehu, Zhou Fengxian, 2001: Study of 1998 Heavy Rainfall over the Yangtze River Basin Using TRMM Data, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 387-396.  doi: 10.1007/BF02919317
    [8] ZHOU Lingli, DU Huiliang, ZHAI Guoqing, WANG Donghai, 2013: Numerical Simulation of the Sudden Rainstorm Associated with the Remnants of Typhoon Meranti (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1353-1372.  doi: 10.1007/s00376-012-2127-3
    [9] XU Zhifang, GE Wenzhong, DANG Renqing, Toshio IGUCHI, Takao TAKADA, 2003: Application of TRMM/PR Data for Numerical Simulations with Mesoscale Model MM5, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 185-193.  doi: 10.1007/s00376-003-0003-x
    [10] Iman ROUSTA, Mehdi DOOSTKAMIAN, Esmaeil HAGHIGHI, Hamid Reza GHAFARIAN MALAMIRI, Parvane YARAHMADI, 2017: Analysis of Spatial Autocorrelation Patterns of Heavy and Super-Heavy Rainfall in Iran, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1069-1081.  doi: 10.1007/s00376-017-6227-y
    [11] Jo-Han LEE, Dong-Kyou LEE, Hyun-Ha LEE, Yonghan CHOI, Hyung-Woo KIM, 2010: Radar Data Assimilation for the Simulation of Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1025-1042.  doi: 10.1007/s00376-010-9162-8
    [12] SUN Jianhua, ZHANG Xiaoling, QI Linlin, ZHAO Sixiong, 2005: An Analysis of a Meso-β System in a Mei-yu Front Using the Intensive Observation Data During CHeRES 2002, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 278-289.  doi: 10.1007/BF02918517
    [13] Xiuzhen LI, Wen ZHOU, Yongqin David CHEN, 2016: Detecting the Origins of Moisture over Southeast China: Seasonal Variation and Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 319-329.  doi: 10.1007/s00376-015-4197-5
    [14] Chang-Kyun PARK, Minhee CHANG, Chang-Hoi HO, Kyung-Ja HA, Jinwon KIM, Byung-Ju SOHN, 2021: Two Types of Diurnal Variations in Heavy Rainfall during July over Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2201-2211.  doi: 10.1007/s00376-021-1178-8
    [15] Yaping WANG, Yongjie HUANG, Xiaopeng CUI, 2018: Impact of Mid- and Upper-Level Dry Air on Tropical Cyclone Genesis and Intensification: A Modeling Study of Durian (2001), ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1505-1521.  doi: 10.1007/s00376-018-8039-0
    [16] WANG Shuzhou, YU Entao, WANG Huijun, 2012: A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-Way Nesting Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 731-743.  doi: 10.1007/s00376-012-1176-y
    [17] Huizhen YU, Zhiyong MENG, 2022: The Impact of Moist Physics on the Sensitive Area Identification for Heavy Rainfall Associated Weather Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 684-696.  doi: 10.1007/s00376-021-0278-9
    [18] WU Liji, HUANG Ronghui, HE Haiyan, SHAO Yaping, WEN Zhiping, 2010: Synoptic Characteristics of Heavy Rainfall Events in Pre-monsoon Season in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 315-327.  doi: 10.1007/s00376-009-8219-z
    [19] Ui-Yong BYUN, Jinkyu HONG, Song-You HONG, Hyeyum Hailey SHIN, 2015: Numerical Simulations of Heavy Rainfall over Central Korea on 21 September 2010 Using the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 855-869.  doi: 10.1007/s00376-014-4075-6
    [20] Rudi XIA, Yali LUO, Da-Lin ZHANG, Mingxin LI, Xinghua BAO, Jisong SUN, 2021: On the Diurnal Cycle of Heavy Rainfall over the Sichuan Basin during 10–18 August 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2183-2200.  doi: 10.1007/s00376-021-1118-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2011
Manuscript revised: 10 November 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Water Cycle and Microphysical Processes Associated with a Mesoscale Convective Vortex System in the Dabie Mountain Area

  • 1. School of Atmospheric Sciences, Nanjing University, Nanjing 210093, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430074,State Key Lab of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081,School of Atmospheric Sciences, Nanjing University, Nanjing 210093,Beijing Institute of Applied Meteorology, Beijing 100029,Anhui Meteorological Observatory, Hefei 230031

Abstract: The water vapor budget and the cloud microphysical processes associated with a heavy rainfall system in the Dabie Mountain area in June 2008 were analyzed using mesoscale reanalysis data (grid resolution 0.03o× 0.03o, 22 vertical layers, 1-h intervals), generated by amalgamating the local analysis and prediction system (LAPS). The contribution of each term in the water vapor budget formula to precipitation was evaluated. The characteristics of water vapor budget and water substances in various phase states were evaluated and their differences in heavy and weak rainfall areas were compared. The precipitation calculated from the total water vapor budget accounted for 77% of actual precipitation; surface evaporation is another important source of water vapor. Water vapor within the domain of interest mainly came from the lower level along the southern boundary and the lower--middle level along the western boundary. This altitude difference for water vapor flux was caused by different weather systems. The decrease of local water vapor in the middle--lower layer in the troposphere during the system development stage also contributed to precipitation. The strength and the layer thickness of water vapor convergence and the content of various water substances in the heavy rainfall areas were obviously larger than in the weak rainfall areas. The peak values of lower-level water vapor convergence, local water vapor income, and the concentration of cloud ice all preceded the heaviest surface rainfall by a few hours.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return