Advanced Search
Article Contents

A Regional Ensemble Forecast System for Stratiform Precipitation Events in Northern China. Part I: A Case Study


doi: 10.1007/s00376-011-0137-1

  • A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple lateral boundary conditions, and multiple physics parameterizations with 11 ensemble members, was developed using the Weather and Research Forecasting Model Advanced Research modeling system for prediction of stratiform precipitation events in northern China. This is the first part of a broader research project to develop a novel cloud-seeding operational system in a probabilistic framework. The ensemble perturbations were extracted from selected members of the National Center for Environmental Prediction Global Ensemble Forecasting System (NCEP GEFS) forecasts, and an inflation factor of two was applied to compensate for the lack of spread in the GEFS forecasts over the research region. Experiments on an actual stratiform precipitation case that occurred on 5--7 June 2009 in northern China were conducted to validate the ensemble system. The IAP REFS system had reasonably good performance in predicting the observed stratiform precipitation system. The perturbation inflation enlarged the ensemble spread and alleviated the underdispersion caused by parent forecasts. Centering the extracted perturbations on higher-resolution NCEP Global Forecast System forecasts resulted in less ensemble mean root-mean-square error and better accuracy in probabilistic quantitative precipitation forecasts (PQPF). However, the perturbation inflation and recentering had less effect on near-surface-level variables compared to the mid-level variables, and its influence on PQPF resolution was limited as well.
  • [1] ZHU Jiangshan, KONG Fanyou, LEI Hengchi, 2013: A Regional Ensemble Forecast System for Stratiform Precipitation Events in the Northern China Region. Part II: Seasonal Evaluation for Summer 2010, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 15-28.  doi: 10.1007/s00376-012-1043-x
    [2] MA Juhui, Yuejian ZHU, Richard WOBUS, Panxing WANG, 2012: An Effective Configuration of Ensemble Size and Horizontal Resolution for the NCEP GEFS, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 782-794.  doi: 10.1007/s00376-012-1249-y
    [3] Zhaorong ZHUANG, Nusrat YUSSOUF, Jidong GAO, 2016: Analyses and Forecasts of a Tornadic Supercell Outbreak Using a 3DVAR System Ensemble, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 544-558.  doi: 10.1007/s00376-015-5072-0
    [4] ZHOU Baiquan, NIU Ruoyun, ZHAI Panmao, 2015: An Assessment of the Predictability of the East Asian Subtropical Westerly Jet Based on TIGGE Data, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 401-412.  doi: 10.1007/s00376-014-4026-2
    [5] FENG Yerong, David H. KITZMILLER, 2006: A Short-Range Quantitative Precipitation Forecast Algorithm Using Back-Propagation Neural Network Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 405-414.  doi: 10.1007/s00376-006-0405-7
    [6] Jiaqi Zheng, Qing Ling, Jia Li, Yerong Feng, 2023: Improving Short-Range Precipitation Forecast of Numerical Weather Prediction Through a Deep Learning-Based Mask Approach, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3085-7
    [7] Jiangshan ZHU, Fanyou KONG, Xiao-Ming HU, Yan GUO, Lingkun RAN, Hengchi LEI, 2018: Impact of Soil Moisture Uncertainty on Summertime Short-range Ensemble Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 839-852.  doi: 10.1007/s00376-017-7107-1
    [8] ZHU Jiang, LIN Caiyan, WANG Zifa, 2009: Dust Storm Ensemble Forecast Experiments in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1053-1070.  doi: 10.1007/s00376-009-8218-0
    [9] T. N. Krishnamurti, Mukul Tewari, Ed Bensman, Wei Han, Zhan Zhang, William K. M. Lau, 1999: An Ensemble Forecast of the South China Sea Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 159-182.  doi: 10.1007/BF02973080
    [10] Yuejian ZHU, 2005: Ensemble Forecast: A New Approach to Uncertainty and Predictability, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 781-788.  doi: 10.1007/BF02918678
    [11] Yang Fanglin, Yuan Chongguang, 1993: Numerical Simulation of Regional Short-Range Climate Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 335-344.  doi: 10.1007/BF02658139
    [12] T. N. KRISHNAMURTI, A. D. SAGADEVAN, A. CHAKRABORTY, A. K. MISHRA, A. SIMON, 2009: Improving Multimodel Weather Forecast of Monsoon Rain Over China Using FSU Superensemble, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 813-839.  doi: 10.1007/s00376-009-8162-z
    [13] Guo DENG, Yuejian ZHU, Jiandong GONG, Dehui CHEN, Richard WOBUS, Zhe ZHANG, 2016: The Effects of Land Surface Process Perturbations in a Global Ensemble Forecast System, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1199-1208.  doi: 10.1007/s00376-016-6036-8
    [14] Lu YANG, Cong-Lan CHENG, Yu XIA, Min CHEN, Ming-Xuan CHEN, Han-Bin ZHANG, Xiang-Yu HUANG, 2023: Evaluation of the Added Value of Probabilistic Nowcasting Ensemble Forecasts on Regional Ensemble Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 937-951.  doi: 10.1007/s00376-022-2056-8
    [15] Sijia LI, Yuan WANG, Huiling YUAN, Jinjie SONG, Xin XU, 2016: Ensemble Mean Forecast Skill and Applications with the T213 Ensemble Prediction System, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1297-1305.  doi: 10.1007/s00376-016-6155-2
    [16] Liu Jianwen, Dong Peiming, 2001: Short-range Climate Prediction Experiment of the Southern Oscillation Index Based on the Singular Spectrum Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 873-881.
    [17] Xiaohao QIN, Wansuo DUAN, Hui XU, 2020: Sensitivity to Tendency Perturbations of Tropical Cyclone Short-range Intensity Forecasts Generated by WRF, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 291-306.  doi: 10.1007/s00376-019-9187-6
    [18] Jin FENG, Min CHEN, Yanjie LI, Jiqin ZHONG, 2021: An Implementation of Full Cycle Strategy Using Dynamic Blending for Rapid Refresh Short-range Weather Forecasting in China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 943-956.  doi: 10.1007/s00376-021-0316-7
    [19] Ni Yunqi, Zhang Qin, Li Yuedong, 1991: A Numerical Study of the Mechanism for the Effect of Northern Winter Arctic Ice Cover on the Global Short-Range Climate Evolution, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 489-498.  doi: 10.1007/BF02919271
    [20] ZHENG Xiaogu, WU Guocan, ZHANG Shupeng, LIANG Xiao, DAI Yongjiu, LI Yong, , 2013: Using Analysis State to Construct a Forecast Error Covariance Matrix in Ensemble Kalman Filter Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1303-1312.  doi: 10.1007/s00376-012-2133-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2012
Manuscript revised: 10 January 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Regional Ensemble Forecast System for Stratiform Precipitation Events in Northern China. Part I: A Case Study

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate University of Chinese Academy of Sciences, Beijing 100049,Center for Analysis and Prediction of Storms, University of Oklahoma, USA,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple lateral boundary conditions, and multiple physics parameterizations with 11 ensemble members, was developed using the Weather and Research Forecasting Model Advanced Research modeling system for prediction of stratiform precipitation events in northern China. This is the first part of a broader research project to develop a novel cloud-seeding operational system in a probabilistic framework. The ensemble perturbations were extracted from selected members of the National Center for Environmental Prediction Global Ensemble Forecasting System (NCEP GEFS) forecasts, and an inflation factor of two was applied to compensate for the lack of spread in the GEFS forecasts over the research region. Experiments on an actual stratiform precipitation case that occurred on 5--7 June 2009 in northern China were conducted to validate the ensemble system. The IAP REFS system had reasonably good performance in predicting the observed stratiform precipitation system. The perturbation inflation enlarged the ensemble spread and alleviated the underdispersion caused by parent forecasts. Centering the extracted perturbations on higher-resolution NCEP Global Forecast System forecasts resulted in less ensemble mean root-mean-square error and better accuracy in probabilistic quantitative precipitation forecasts (PQPF). However, the perturbation inflation and recentering had less effect on near-surface-level variables compared to the mid-level variables, and its influence on PQPF resolution was limited as well.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return