Advanced Search
Article Contents

A Comparison of Precipitation Distribution of Two Landfalling Tropical Cyclones during the Extratropical Transition


doi: 10.1007/s00376-011-0148-y

  • The precipitation distributions associated with two landfalling tropical cyclones (TCs) during extratropical transition (ET) were examined in this study. Their distinction is that the bulk of precipitation fell to the left of the TC track in one TC and to the right in the other. The analyses indicate that, for the TC Haima (2004) case, accompanied by the approach of a deep midlatitude trough throughout the depth of the troposphere, the warm and moist air advection by the southeasterly flow north of TC was favorable for warm advection and frontogenesis to the northwest of the TC. Due to the steepening of equivalent potential temperature (θe, the air-parcel uplift along the θe, surface, in collaboration with thermally direct circulation related to frontogenesis, led to enhanced precipitation northwest of the TC. In contrast, for TC Matsa (2005) embedded within a moister environment, a weak midlatitude trough was situated at the mid-upper level. The convection was triggered by the conditional instability at the lower level and then sustained by dynamic forcing at the mid-upper level so that the heavy precipitation occurred to the northeast of TC. For the two TC cases, the precipitation enhancement was also linked to the upper-level anomalous divergence associated with the jet-related forcing on the right side of the jet entrance. From the quasigeostrophic perspective, the advection of geostrophic absolute vorticity by the thermal wind most likely served as an indication reflecting the displacement of the vertical motion relative to the center of the TC.
  • [1] Hong HUANG, Dan WU, Yuan WANG, Zhen WANG, Yu LIU, 2024: Track-Pattern-Based Characteristics of Extratropical Transitioning Tropical Cyclones in the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-2330-4
    [2] Meng YAN, Johnny C. L. CHAN, Kun ZHAO, 2020: Impacts of Urbanization on the Precipitation Characteristics in Guangdong Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 696-706.  doi: 10.1007/s00376-020-9218-3
    [3] HUANG Hong, JIANG Yongqiang, CHEN Zhongyi, LUO Jian, WANG Xuezhong, 2014: Effect of Tropical Cyclone Intensity and Instability on the Evolution of Spiral Bands, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1090-1100.  doi: 10.1007/s00376-014-3108-5
    [4] QIN Xiaohao, MU Mu, 2014: Can Adaptive Observations Improve Tropical Cyclone Intensity Forecasts?, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 252-262.  doi: 10.1007/s00376-013-3008-0
    [5] JIE Weihua, WU Tongwen, WANG Jun, LI Weijing, LIU Xiangwen, 2014: Improvement of 6-15 Day Precipitation Forecasts Using a Time-Lagged Ensemble Method, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 293-304.  doi: 10.1007/s00376-013-3037-8
    [6] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [7] Chang-Hoi HO, Joo-Hong KIM, Hyeong-Seog KIM, Woosuk CHOI, Min-Hee LEE, Hee-Dong YOO, Tae-Ryong KIM, Sangwook PARK, 2013: Technical Note on a Track-pattern-based Model for Predicting Seasonal Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1260-1274.  doi: 10.1007/s00376-013-2237-6
    [8] MA Zhanhong, FEI Jianfang, HUANG Xiaogang, CHENG Xiaoping, 2014: Impacts of the Lowest Model Level Height on Tropical Cyclone Intensity and Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 421-434.  doi: 10.1007/s00376-013-3044-9
    [9] GAO Feng*, Peter P. CHILDS, Xiang-Yu HUANG, Neil A. JACOBS, and Jinzhong MIN, 2014: A Relocation-based Initialization Scheme to Improve Track-forecasting of Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 27-36.  doi: 10.1007/s00376-013-2254-5
    [10] Geng Quanzhen, Ding Yihui, Huang Chaoying, 1997: Influences of the Extratropical Pacific SST on the Precipitation of the North China Region, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 339-349.  doi: 10.1007/s00376-997-0054-5
    [11] Tian FENG, Fumin REN, Da-Lin ZHANG, Guoping LI, Wenyu QIU, Hui YANG, 2020: Sideswiping Tropical Cyclones and Their Associated Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 707-717.  doi: 10.1007/s00376-020-9224-5
    [12] Linjun HAN, Fuzhong WENG, Hao HU, Xiuqing HU, 2024: Cloud-Type-Dependent 1DVAR Algorithm for Retrieving Hydrometeors and Precipitation in Tropical Cyclone Nanmadol from GMI Data, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 407-419.  doi: 10.1007/s00376-023-3084-8
    [13] Li Wei, Yu Rucong, Zhang Xuehong, 2001: Impacts of Sea Surface Temperature in the Tropical Pacific on Interannual Variability of Madden-Julian Oscillation in Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 429-444.  doi: 10.1007/BF02919322
    [14] Xinyu LI, Riyu LU, 2018: Subseasonal Change in the Seesaw Pattern of Precipitation between the Yangtze River Basin and the Tropical Western North Pacific during Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1231-1242.  doi: 10.1007/s00376-018-7304-6
    [15] LI Rui, FU Yunfei, 2005: Tropical Precipitation Estimated by GPCP and TRMM PR Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 852-864.  doi: 10.1007/BF02918685
    [16] Yao HA, Zhong ZHONG, Haikun ZHAO, Yimin ZHU, Yao YAO, Yijia HU, 2022: A Climatological Perspective on Extratropical Synoptic-Scale Transient Eddy Activity Response to Western Pacific Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 333-343.  doi: 10.1007/s00376-021-0375-9
    [17] Qian WANG, Dajun ZHAO, Yihong DUAN, Shoude GUAN, Lin DONG, Hongxiong XU, Hui WANG, 2023: Super Typhoon Hinnamnor (2022) with a Record-Breaking Lifespan over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1558-1566.  doi: 10.1007/s00376-023-2336-y
    [18] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [19] Yan ZHENG, Liguang WU, Haikun ZHAO, Xingyang ZHOU, Qingyuan LIU, 2020: Simulation of Extreme Updrafts in the Tropical Cyclone Eyewall, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 781-792.  doi: 10.1007/s00376-020-9197-4
    [20] Meng Zhiyong, Chen Lianshou, Xu Xiangde, 2002: Recent Progress on Tropical Cyclone Research in China, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 103-110.  doi: 10.1007/s00376-002-0037-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2011
Manuscript revised: 10 November 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Comparison of Precipitation Distribution of Two Landfalling Tropical Cyclones during the Extratropical Transition

  • 1. Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190

Abstract: The precipitation distributions associated with two landfalling tropical cyclones (TCs) during extratropical transition (ET) were examined in this study. Their distinction is that the bulk of precipitation fell to the left of the TC track in one TC and to the right in the other. The analyses indicate that, for the TC Haima (2004) case, accompanied by the approach of a deep midlatitude trough throughout the depth of the troposphere, the warm and moist air advection by the southeasterly flow north of TC was favorable for warm advection and frontogenesis to the northwest of the TC. Due to the steepening of equivalent potential temperature (θe, the air-parcel uplift along the θe, surface, in collaboration with thermally direct circulation related to frontogenesis, led to enhanced precipitation northwest of the TC. In contrast, for TC Matsa (2005) embedded within a moister environment, a weak midlatitude trough was situated at the mid-upper level. The convection was triggered by the conditional instability at the lower level and then sustained by dynamic forcing at the mid-upper level so that the heavy precipitation occurred to the northeast of TC. For the two TC cases, the precipitation enhancement was also linked to the upper-level anomalous divergence associated with the jet-related forcing on the right side of the jet entrance. From the quasigeostrophic perspective, the advection of geostrophic absolute vorticity by the thermal wind most likely served as an indication reflecting the displacement of the vertical motion relative to the center of the TC.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return