Advanced Search
Article Contents

Taiwan Yushan Snowfall Activity and Its Association with Atmospheric Circulation from 1979 to 2009


doi: 10.1007/s00376-011-0178-5

  • Yushan is the most famous location for snow in Taiwan, while snowfall in the subtropical zone is rare. When it is snowing in Yushan, people are experiencing unusually cold and wet weather elsewhere in Taiwan. In this study, Yushan snowfall activity from 1979 to 2009 and the related atmosphere circulation were examined with the Taiwan Central Weather Bureau's Yushan weather station observations and the National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) reanalysis atmospheric data. To provide a quantitative measure of snowfall events, a snowfall activity index (SAI) was defined in this study. The time series of yearly SAIs shows that Yushan snowfall activity for an active year, such as 1983 (SAI =39 153) was ~118 times larger than for an inactive year, such as 1999 (SAI=331). Our analyses show that snowfall activity is closely related to the position of the East Asian Trough (EAT) and the strength of the West Pacific High (WPH). In active years, when the EAT shifted eastward and the strength of WPH increased, an anomalous anticyclone occurred in the West Pacific. This anticyclone introduced anomalous southwesterly flows along the southeastern cost of mainland China and over Taiwan, resulting in a wetter-than-normal atmosphere that favored snowfall. Alternatively, in inactive years, a drier-than-normal atmosphere resulted in sluggish snowfall seasons.
  • [1] Siyu Zhou, Bo Sun, Huijun Wang, Yi Zheng, Jiarui Cai, Huixin Li, Botao Zhou, 2024: Distinct interannual variability and physical mechanisms of snowfall frequency over the Eurasian continent during autumn and winter, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3327-3
    [2] S. PANCHEV, T. SPASSOVA, 2005: Simple General Atmospheric Circulation and Climate Models with Memory, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 765-769.  doi: 10.1007/BF02918720
    [3] Kunhui YE, Renguang WU, 2017: Autumn Snow Cover Variability over Northern Eurasia and Roles of Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 847-858.  doi: 10.1007/s00376-017-6287-z
    [4] LI Guoqing, 2005: 27.3-day and 13.6-day Atmospheric Tide and Lunar Forcing on Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 359-374.  doi: 10.1007/BF02918750
    [5] Ping WU, Yihui DING, Yanju LIU, 2017: Atmospheric Circulation and Dynamic Mechanism for Persistent Haze Events in the Beijing-Tianjin-Hebei Region, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 429-440.  doi: 10.1007/s00376-016-6158-z
    [6] Deliang CHEN, Anders OMSTEDT, 2005: Climate-Induced Variability of Sea Level in Stockholm: Influence of Air Temperature and Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 655-664.  doi: 10.1007/BF02918709
    [7] Michael KELLEHER, James SCREEN, 2018: Atmospheric Precursors of and Response to Anomalous Arctic Sea Ice in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 27-37.  doi: 10.1007/s00376-017-7039-9
    [8] Minghao BI, Ke XU, Riyu LU, 2023: Monsoon Break over the South China Sea during Summer: Statistical Features and Associated Atmospheric Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1749-1765.  doi: 10.1007/s00376-023-2377-2
    [9] CHENG Aifang, FENG Qi, Guobin FU, ZHANG Jiankai, LI Zongxing, HU Meng, WANG Gang, 2015: Recent Changes in Precipitation Extremes in the Heihe River Basin, Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1391-1406.  doi: 10.1007/s00376-015-4199-3
    [10] Juan AO, Jianqi SUN, 2016: The Impact of Boreal Autumn SST Anomalies over the South Pacific on Boreal Winter Precipitation over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 644-655.  doi: 10.1007/s00376-015-5067-x
    [11] Renguang WU, 2017: Relationship between Indian and East Asian Summer Rainfall Variations, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 4-15.  doi: 10.1007/s00376-016-6216-6
    [12] Gian A. VILLAMIL-OTERO, Jing ZHANG, Juanxiong HE, Xiangdong ZHANG, 2018: Role of Extratropical Cyclones in the Recently Observed Increase in Poleward Moisture Transport into the Arctic Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 85-94.  doi: 10.1007/s00376-017-7116-0
    [13] Jinfei WANG, Hao LUO, Qinghua YANG, Jiping LIU, Lejiang YU, Qian SHI, Bo HAN, 2022: An Unprecedented Record Low Antarctic Sea-ice Extent during Austral Summer 2022, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1591-1597.  doi: 10.1007/s00376-022-2087-1
    [14] Shan LU, Zeyong HU, Haipeng YU, Weiwei FAN, Chunwei FU, Di WU, 2021: Changes of Extreme Precipitation and its Associated Mechanisms in Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1665-1681.  doi: 10.1007/s00376-021-0409-3
    [15] Xiaoling YANG, Botao ZHOU, Ying XU, Zhenyu HAN, 2023: CMIP6 Evaluation and Projection of Precipitation over Northern China: Further Investigation, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 587-600.  doi: 10.1007/s00376-022-2092-4
    [16] Hengyi WENG, 2012: Impacts of Multi-Scale Solar Activity on Climate. Part I: Atmospheric Circulation Patterns and Climate Extremes, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 867-886.  doi: 10.1007/s00376-012-1238-1
    [17] Poonam Mehra, 1990: Association among Geomagnetic Activity, Atmospheric Electric Field and Selected Meteorological Parameters, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 171-177.  doi: 10.1007/BF02919154
    [18] Li Chongyin, Long Zhenxia, Zhang Qingyun, 2001: Strong/Weak Summer Monsoon Activity over the South China Sea and Atmospheric Intraseasonal Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1146-1160.  doi: 10.1007/s00376-001-0029-x
    [19] Li Chongyin, Mu Mingquan, 2001: The Influence of the Indian Ocean Dipole on Atmospheric Circulation and Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 831-843.
    [20] Kevin HAMILTON, 2006: High Resolution Global Modeling of the Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 842-856.  doi: 10.1007/s00376-006-0842-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2011
Manuscript revised: 10 November 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Taiwan Yushan Snowfall Activity and Its Association with Atmospheric Circulation from 1979 to 2009

  • 1. Graduate University of the Chinese Academy of Sciences, Beijing 100049, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate Institute of Earth Sciences, Chinese Culture University, Taipei 111,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, Graduate Institute of Earth Sciences, Chinese Culture University, Taipei 111,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Yushan is the most famous location for snow in Taiwan, while snowfall in the subtropical zone is rare. When it is snowing in Yushan, people are experiencing unusually cold and wet weather elsewhere in Taiwan. In this study, Yushan snowfall activity from 1979 to 2009 and the related atmosphere circulation were examined with the Taiwan Central Weather Bureau's Yushan weather station observations and the National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) reanalysis atmospheric data. To provide a quantitative measure of snowfall events, a snowfall activity index (SAI) was defined in this study. The time series of yearly SAIs shows that Yushan snowfall activity for an active year, such as 1983 (SAI =39 153) was ~118 times larger than for an inactive year, such as 1999 (SAI=331). Our analyses show that snowfall activity is closely related to the position of the East Asian Trough (EAT) and the strength of the West Pacific High (WPH). In active years, when the EAT shifted eastward and the strength of WPH increased, an anomalous anticyclone occurred in the West Pacific. This anticyclone introduced anomalous southwesterly flows along the southeastern cost of mainland China and over Taiwan, resulting in a wetter-than-normal atmosphere that favored snowfall. Alternatively, in inactive years, a drier-than-normal atmosphere resulted in sluggish snowfall seasons.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return