Advanced Search
Article Contents

The East Pacific Wavetrain: Its Variability and Impact on the Atmospheric Circulation in the Boreal Winter


doi: 10.1007/s00376-011-0216-3

  • The East Pacific wavetrain (EPW) refers to here the intense stationary wave activity detected in the troposphere over the East Pacific and North America in 45 northern winters from 1958 to 2002. The EPW is generated in the lower troposphere over the East Pacific, propagating predominantly eastward into North America and slightly upward then eventually into the stratosphere. The intensity of the EPW varies from year to year and exhibits apparent decadal variability. For the period 1958--1964, the EPW was in its second maximum, and it was weakest for the period 1965--1975, then it was strongest for the period 1976--1987. After 1987, the EPW weakened again. The intensity and position of the members (i.e., the Aleutian low, the North American trough, and the North American ridge) of the EPW oscillate from time to time. For an active EPW versus a weak EPW, the Aleutian low deepens abnormally and shifts its center from the west to the east of the date line, in the middle and upper troposphere the East Asian trough extends eastward, and the Canadian ridge intensifies at the same time. The opposite is true for a weak EPW. Even in the lower stratosphere, significant changes in the stationary wave pattern are also observed. Interestingly the spatial variability of the EPW assumes a Pacific--North American (PNA)-like teleconnection pattern. It is likely that the PNA low-frequency oscillation is a reflection of the oscillations of intensity and position of the members of the EPW in horizontal direction.
  • [1] Xiaofan Li, Han-Ru Cho, 1997: Development and Propagation of Equatorial Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 323-338.  doi: 10.1007/s00376-997-0053-6
    [2] Yong. L. McHall, 1991: Planetary Stationary Waves in the Atmosphere Part I: Orographic Stationary Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 211-224.  doi: 10.1007/BF02658095
    [3] Yong. L. McHall, 1991: Planetary Stationary Waves in the Atmosphere Part II: Thermal Stationary Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 225-236.  doi: 10.1007/BF02658096
    [4] Lu Peisheng, 1992: The Structure and Propagation of Stationary Planetary Wave Packet in the Barotropic Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 157-166.  doi: 10.1007/BF02657506
    [5] Zheng Xingyu, Zeng Qingcun, Huang Ronghui, 1991: The Propagation of Inertia-Gravity Waves and Their Influence on Mean Zonal Flow, Part One: the Propagation of Inertia-Gravity Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 431-446.  doi: 10.1007/BF02919266
    [6] Chen Wen, Huang Ronghui, 2002: The Propagation and Transport Effect of Planetary Waves in the Northern Hemisphere Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 1113-1126.  doi: 10.1007/s00376-002-0069-x
    [7] LI Qian, Hans-F. GRAF, CUI Xuefeng, 2011: The Role of Stationary and Transient Planetary Waves in the Maintenance of Stratospheric Polar Vortex Regimes in Northern Hemisphere Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 187-194.  doi: 10.1007/s00376-010-9163-7
    [8] Zheng Xingyu, Zeng Qingcun, Huang Ronghui, 1992: The Propagation of Inertia-Gravity Waves and Their Influence on Zonal Mean Flow Part Two: Wave Breaking and Critical Levels, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 29-36.  doi: 10.1007/BF02656927
    [9] Zhang Daizhou, Tanaka Hiroshi, Qin Yu, 1996: Internal Gravity Waves Generated by a Local Thermal Source in an Irrotational Zonal-Vertical Plane: Numerical Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 124-132.  doi: 10.1007/BF02657033
    [10] JIANG Yuxin, TAN Benkui, 2015: Two Modes and Their Seasonal and Interannual Variation of the Baroclinic Waves/Storm Tracks over the Wintertime North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1244-1254.  doi: 10.1007/s00376-015-4251-3
    [11] CHEN Xianyan, Masahide KIMOTO, 2009: Simulating Tropical Instability Waves in the Equatorial Eastern Pacific with a Coupled General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1015-1026.  doi: 10.1007/s00376-009-8078-7
    [12] Zhang Jianwen, Yu Shihua, 1998: A Diagnostic Study on the Relationship between the Assembling of Low Frequency Waves in the Pacific Ocean and the Abnormality of the Subtropical High, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 247-257.  doi: 10.1007/s00376-998-0043-3
    [13] WEI Zhigang, WEN Jun, LI Zhenchao, 2009: Vertical Atmospheric Structure of the Late Summer Clear Days over the East Gansu Loess Plateau in China, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 381-389.  doi: 10.1007/s00376-009-0381-9
    [14] He Jinhai, Zhou Bing, Wen Min, Li Feng, 2001: Vertical Circulation Structure, lnterannual Variation Features and Variation Mechanism of Western Pacific Subtropical High, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 497-510.  doi: 10.1007/s00376-001-0040-2
    [15] Tan Benkui, Yin Dongping, 1995: Propagation of Envelope Solitons in Baroclinic Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 439-448.  doi: 10.1007/BF02657004
    [16] Huang Ronghui, 1984: THE CHARACTERISTICS OF THE FORCED STATIONARY PLANETARY WAVE PROPAGATIONS IN SUMMER NORTHERN HEMISPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 84-104.  doi: 10.1007/BF03187619
    [17] Lu Keli, Zhu Yongchun, 1994: Seasonal Variation of Stationary and Low-Frequency Rossby Wave Rays, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 427-435.  doi: 10.1007/BF02658163
    [18] YANG Peicai, WANG Geli, BIAN Jianchun, ZHOU Xiuji, 2010: The Prediction of Non-stationary Climate Series Based on Empirical Mode Decomposition, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 845-854.  doi: 10.1007/s00376-009-9128-x
    [19] Fu Yunfei, Han Zhaoyuan, Gong Minwei, 1995: Condensation Induced by Rarefaction Waves and Reflected Rarefaction Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 507-512.  doi: 10.1007/BF02657008
    [20] Liu Shida, Liu Shikuo, 1985: NONLINEAR WAVES IN BAROTROPIC MODEL, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 147-157.  doi: 10.1007/BF03179747

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2012
Manuscript revised: 10 May 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The East Pacific Wavetrain: Its Variability and Impact on the Atmospheric Circulation in the Boreal Winter

  • 1. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871,Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, Nansen Environmental and Remote Sensing Center, Bergen, Norway, Bjerknes Center for Climate Research, Bergen, Norway,Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871,Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871

Abstract: The East Pacific wavetrain (EPW) refers to here the intense stationary wave activity detected in the troposphere over the East Pacific and North America in 45 northern winters from 1958 to 2002. The EPW is generated in the lower troposphere over the East Pacific, propagating predominantly eastward into North America and slightly upward then eventually into the stratosphere. The intensity of the EPW varies from year to year and exhibits apparent decadal variability. For the period 1958--1964, the EPW was in its second maximum, and it was weakest for the period 1965--1975, then it was strongest for the period 1976--1987. After 1987, the EPW weakened again. The intensity and position of the members (i.e., the Aleutian low, the North American trough, and the North American ridge) of the EPW oscillate from time to time. For an active EPW versus a weak EPW, the Aleutian low deepens abnormally and shifts its center from the west to the east of the date line, in the middle and upper troposphere the East Asian trough extends eastward, and the Canadian ridge intensifies at the same time. The opposite is true for a weak EPW. Even in the lower stratosphere, significant changes in the stationary wave pattern are also observed. Interestingly the spatial variability of the EPW assumes a Pacific--North American (PNA)-like teleconnection pattern. It is likely that the PNA low-frequency oscillation is a reflection of the oscillations of intensity and position of the members of the EPW in horizontal direction.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return