Advanced Search
Article Contents

Weakening of Interannual Variability in the Summer East Asian Upper-tropospheric Westerly Jet since the Mid-1990s


doi: 10.1007/s00376-011-0222-5

  • In this study, we found that the intensity of interannual variability in the summer upper-tropospheric zonal wind has significantly weakened over Northeast Asia and the subtropical western North Pacific (WNP) since the mid-1990s, concurrent with the previously documented decrease of the westerly jet over North China and Northwest China. Corresponding to this weakening of zonal wind variability, the meridional displacement of the East Asian westerly jet (EAJ) manifested as the leading mode of zonal wind variability over the WNP and East Asia (WNP--EA) before the mid-1990s but not afterward. The energetics of the anomalous pattern associated with the meridional displacement of the EAJ suggests that barotropic energy conversion, from basic flow to anomalous patterns, has led to the weakening of the variability in the EAJ meridional displacement and to a change in the leading dominant mode since the mid-1990s. The barotropic energy conversion efficiently maintained the anomalies associated with the variability in the EAJ meridional displacement during 1979--1993 but acted to dampen the anomalies during 1994--2008. A further investigation of the energetics suggests that the difference in the patterns of the circulation anomaly associated with either the first leading mode or the meridional displacement of the EAJ, i.e., a southwest--northeast tilted pattern during 1979--1993 and a zonally oriented pattern during 1994--2008, has contributed greatly to the change in barotropic energy conversion.
  • [1] CHEN Wei, and LU Riyu, 2014: A Decadal Shift of Summer Surface Air Temperature over Northeast Asia around the Mid-1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 735-742.  doi: 10.1007/s00376-013-3154-4
    [2] LIU Xiangwen, WU Tongwen, YANG Song, LI Qiaoping, CHENG Yanjie, LIANG Xiaoyun, FANG Yongjie, JIE Weihua, NIE Suping, 2014: Relationships between Interannual and Intraseasonal Variations of the Asian-Western Pacific Summer Monsoon Hindcasted by BCC_CSM1.1(m), ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1051-1064.  doi: 10.1007/s00376-014-3192-6
    [3] Buwen DONG, Rowan T. SUTTON, Wei CHEN, Xiaodong LIU, Riyu LU, Ying SUN, 2016: Abrupt Summer Warming and Changes in Temperature Extremes over Northeast Asia Since the Mid-1990s: Drivers and Physical Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1005-1023.  doi: 10.1007/s00376-016-5247-3
    [4] K.-M. Lau, Song Yang, 1997: Climatology and Interannual Variability of the Southeast Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 141-162.  doi: 10.1007/s00376-997-0016-y
    [5] Chen Wen, Hans-F. Graf, Huang Ronghui, 2000: The Interannual Variability of East Asian Winter Monsoon and Its Relation to the Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 48-60.  doi: 10.1007/s00376-000-0042-5
    [6] LI Fei, WANG Huijun, 2012: Predictability of the East Asian Winter Monsoon Interannual Variability as Indicated by the DEMETER CGCMS, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 441-454.  doi: 10.1007/s00376-011-1115-3
    [7] Ren Baohua, Huang Ronghui, 1999: Interannual Variability of the Convective Activities Associated with the East Asian Summer Monsoon Obtained from TBB Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 77-90.  doi: 10.1007/s00376-999-0005-4
    [8] Ji Liren, Sun Shuqing, Klaus Arpe, Lennart Benglsson, 1997: Model Study on the Interannual Variability of Asian Winter Monsoon and Its Influence, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 1-22.  doi: 10.1007/s00376-997-0039-4
    [9] Ya GAO, Huijun WANG, Dong CHEN, 2017: Interdecadal Variations of the South Asian Summer Monsoon Circulation Variability and the Associated Sea Surface Temperatures on Interannual Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 816-832.  doi: 10.1007/ s00376-017-6246-8
    [10] FU Yuanhai, LU Riyu, 2010: Simulated Change in the Interannual Variability of South Asian Summer Monsoon in the 21st Century, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 992-1002.  doi: 10.1007/s00376-009-9124-1
    [11] Wang Huijun, 2000: The Interannual Variability of East Asian Monsoon and Its Relationship with SST in a Coupled Atmosphere-Ocean-Land Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 31-47.  doi: 10.1007/s00376-000-0041-6
    [12] XUE Feng, ZENG Qingcun, HUANG Ronghui, LI Chongyin, LU Riyu, ZHOU Tianjun, 2015: Recent Advances in Monsoon Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 206-229.  doi: 10.1007/s00376-014-0015-8
    [13] CHEN Xiao, YAN Youfang, CHENG Xuhua, QI Yiquan, 2013: Performances of Seven Datasets in Presenting the Upper Ocean Heat Content in the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1331-1342.  doi: 10.1007/s00376-013-2132-1
    [14] BAO Qing, WU Guoxiong, LIU Yimin, YANG Jing, WANG Zaizhi, ZHOU Tianjun, 2010: An Introduction to the Coupled Model FGOALS1.1-s and Its Performance in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1131-1142.  doi: 10.1007/s00376-010-9177-1
    [15] YUAN Yuan, C. L. Johnny CHAN, ZHOU Wen, LI Chongyin, 2008: Decadal and Interannual Variability of the Indian Ocean Dipole, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 856-866.  doi: 10.1007/s00376-008-0856-0
    [16] Xue Feng, Zeng Qingcun, 1999: Diagnostic Study on Seasonality and Interannual Variability of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 537-543.  doi: 10.1007/s00376-999-0029-9
    [17] HUANG Ronghui, ZHOU Liantong, CHEN Wen, 2003: The Progresses of Recent Studies on the Variabilities of the East Asian Monsoon and Their Causes, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 55-69.  doi: 10.1007/BF03342050
    [18] Dabang JIANG, Dan HU, Zhiping TIAN, Xianmei LANG, 2020: Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1102-1118.  doi: 10.1007/s00376-020-2034-y
    [19] Hai ZHI, Rong-Hua ZHANG, Pengfei LIN, Peng YU, 2019: Interannual Salinity Variability in the Tropical Pacific in CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 378-396.  doi: 10.1007/s00376-018-7309-1
    [20] HU Ruijin, LIU Qinyu, WANG Qi, J. Stuart GODFREY, MENG Xiangfeng, 2005: The Shallow Meridional Overturning Circulation in the Northern Indian Ocean and Its Interannual Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 220-229.  doi: 10.1007/BF02918511

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2011
Manuscript revised: 10 November 2011
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Weakening of Interannual Variability in the Summer East Asian Upper-tropospheric Westerly Jet since the Mid-1990s

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea

Abstract: In this study, we found that the intensity of interannual variability in the summer upper-tropospheric zonal wind has significantly weakened over Northeast Asia and the subtropical western North Pacific (WNP) since the mid-1990s, concurrent with the previously documented decrease of the westerly jet over North China and Northwest China. Corresponding to this weakening of zonal wind variability, the meridional displacement of the East Asian westerly jet (EAJ) manifested as the leading mode of zonal wind variability over the WNP and East Asia (WNP--EA) before the mid-1990s but not afterward. The energetics of the anomalous pattern associated with the meridional displacement of the EAJ suggests that barotropic energy conversion, from basic flow to anomalous patterns, has led to the weakening of the variability in the EAJ meridional displacement and to a change in the leading dominant mode since the mid-1990s. The barotropic energy conversion efficiently maintained the anomalies associated with the variability in the EAJ meridional displacement during 1979--1993 but acted to dampen the anomalies during 1994--2008. A further investigation of the energetics suggests that the difference in the patterns of the circulation anomaly associated with either the first leading mode or the meridional displacement of the EAJ, i.e., a southwest--northeast tilted pattern during 1979--1993 and a zonally oriented pattern during 1994--2008, has contributed greatly to the change in barotropic energy conversion.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return