Advanced Search
Article Contents

Low-Frequency Coupled Atmosphere--Ocean Variability in the Southern Indian Ocean


doi: 10.1007/s00376-011-1096-2

  • The low-frequency atmosphere--ocean coupled variability of the southern Indian Ocean (SIO) was investigated using observation data over 1958--2010. These data were obtained from ECMWF for sea level pressure (SLP) and wind, from NCEP/NCAR for heat fluxes, and from the Hadley Center for SST. To obtain the coupled air-sea variability, we performed SVD analyses on SST and SLP. The primary coupled mode represents 43% of the total square covariance and is featured by weak westerly winds along 45--30S. This weakened subtropical anticyclone forces fluctuations in a well-known subtropical dipole structure in the SST via wind-induced processes. The SST changes in response to atmosphere forcing and is predictable with a lead-time of 1--2 months. Atmosphere--ocean coupling of this mode is strongest during the austral summer. Its principle component is characterized by mixed interannual and interdecadal fluctuations. There is a strong relationship between the first mode and Antarctic Oscillation (AAO). The AAO can influence the coupled processes in the SIO by modulating the subtropical high. The second mode, accounting for 30% of the total square covariance, represents a 25-year period interdecadal oscillation in the strength of the subtropical anticyclone that is accompanied by fluctuations of a monopole structure in the SST along the 35--25S band. It is caused by subsidence of the atmosphere. The present study also shows that physical processes of both local thermodynamic and ocean circulation in the SIO have a crucial role in the formation of the atmosphere--ocean covariability.
  • [1] LI Shuanglin, CHEN Xiaoting, 2014: Quantifying the Response Strength of the Southern Stratospheric Polar Vortex to Indian Ocean Warming in Austral Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 492-503.  doi: 10.1007/s00376-013-2322-x
    [2] Wenjing SHI, Ziniu XIAO, Jianjun XUE, 2016: Teleconnected Influence of the Boreal Winter Antarctic Oscillation on the Somali Jet: Bridging Role of Sea Surface Temperature in Southern High and Middle Latitudes, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 47-57.  doi: 10.1007/s00376-015-5094-7
    [3] HU Ruijin, LIU Qinyu, MENG Xiangfeng, J. Stuart GODFREY, 2005: On the Mechanism of the Seasonal Variability of SST in the Tropical Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 451-462.  doi: 10.1007/BF02918758
    [4] Yujie WU, Wansuo DUAN, 2018: Impact of SST Anomaly Events over the Kuroshio-Oyashio Extension on the "Summer Prediction Barrier", ADVANCES IN ATMOSPHERIC SCIENCES, 35, 397-409.  doi: 10.1007/s00376-017-6322-0
    [5] Ben TIAN, Hong-Li REN, 2022: Diagnosing SST Error Growth during ENSO Developing Phase in the BCC_CSM1.1(m) Prediction System, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 427-442.  doi: 10.1007/s00376-021-1189-5
    [6] LU Riyu, LI Ying, Buwen DONG, 2007: Arctic Oscillation and Antarctic Oscillation in Internal Atmospheric Variability with an Ensemble AGCM Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 152-162.  doi: 10.1007/s00376-007-0152-4
    [7] ZHU Yali, 2009: The Antarctic Oscillation-East Asian Summer Monsoon Connections in NCEP-1 and ERA-40, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 707-716.  doi: 10.1007/s00376-009-8196-2
    [8] Tingting HAN, Huijun WANG, Jianqi SUN, 2017: Strengthened Relationship between the Antarctic Oscillation and ENSO After the Mid-1990s during Austral Spring, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 54-65.  doi: 10.1007/s00376-016-6143-6
    [9] Dapeng ZHANG, Yanyan HUANG, Bo SUN, Fei LI, Huijun WANG, 2019: Verification and Improvement of the Ability of CFSv2 to Predict the Antarctic Oscillation in Boreal Spring, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 292-302.  doi: 10.1007/s00376-018-8106-6
    [10] MA Hao, WU Lixin, LI Chun, 2010: The Role of Southern High Latitude Wind Stress in Global Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 371-381.  doi: 10.1007/s00376-009-9047-x
    [11] CAO Xi, CHEN Shangfeng, CHEN Guanghua, CHEN Wen, WU Renguang, 2015: On the Weakened Relationship between Spring Arctic Oscillation and Following Summer Tropical Cyclone Frequency over the Western North Pacific: A Comparison between 1968-1986 and 1989-2007, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1319-1328.  doi: 10.1007/s00376-015-4256-y
    [12] YAN Li, WANG Panxing, YU Yongqiang, LI Lijuan, WANG Bin, 2010: Potential Predictability of Sea Surface Temperature in a Coupled Ocean--Atmosphere GCM, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 921-936.  doi: 10.1007/s00376-009-9062-y
    [13] Xiang LI, Tiejun LING, Yunfei ZHANG, Qian ZHOU, 2018: A 31-year Global Diurnal Sea Surface Temperature Dataset Created by an Ocean Mixed-Layer Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1443-1454.  doi: 10.1007/s00376-018-8016-7
    [14] LIN Pengfei, LIU Hailong, ZHANG Xuehong, 2007: Sensitivity of the Upper Ocean Temperature and Circulation in the Equatorial Pacific to Solar Radiation Penetration Due to Phytoplankton, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 765-780.  doi: 10.1007/s00376-007-0765-7
    [15] LIU Juan, WANG Bin, LIU Hailong, YU Yongqiang, 2008: A New Global Four-Dimensional Variational Ocean Data Assimilation System and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 680-691.  doi: 10.1007/s00376-008-0680-6
    [16] FU Jianjian, LI Shuanglin, LUO Dehai, 2009: Impact of Global SST on Decadal Shift of East Asian Summer Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 192-201.  doi: 10.1007/s00376-009-0192-z
    [17] FAN Lei, Zhengyu LIU, LIU Qinyu, 2011: Robust GEFA Assessment of Climate Feedback to SST EOF Modes, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 907-912.  doi: 10.1007/s00376-010-0081-5
    [18] Juan AO, Jianqi SUN, 2016: The Impact of Boreal Autumn SST Anomalies over the South Pacific on Boreal Winter Precipitation over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 644-655.  doi: 10.1007/s00376-015-5067-x
    [19] ZHOU Lian-Tong, Chi-Yung TAM, ZHOU Wen, Johnny C. L. CHAN, 2010: Influence of South China Sea SST and the ENSO on Winter Rainfall over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 832-844.  doi: 10.1007/s00376--009-9102-7
    [20] Jianjun Xu, Johnny C. L. Chan, 2002: Interannual and Interdecadal Variability of Winter Precipitation over China in Relation to Global Sea Level Pressure Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 914-926.  doi: 10.1007/s00376-002-0055-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2012
Manuscript revised: 10 May 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Low-Frequency Coupled Atmosphere--Ocean Variability in the Southern Indian Ocean

  • 1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences, Qingdao 266071;Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences, Qingdao 266071;Applied Hydrometeorological Research Institute, Nanjing University of Information Science and Technology, Nanjing 210044

Abstract: The low-frequency atmosphere--ocean coupled variability of the southern Indian Ocean (SIO) was investigated using observation data over 1958--2010. These data were obtained from ECMWF for sea level pressure (SLP) and wind, from NCEP/NCAR for heat fluxes, and from the Hadley Center for SST. To obtain the coupled air-sea variability, we performed SVD analyses on SST and SLP. The primary coupled mode represents 43% of the total square covariance and is featured by weak westerly winds along 45--30S. This weakened subtropical anticyclone forces fluctuations in a well-known subtropical dipole structure in the SST via wind-induced processes. The SST changes in response to atmosphere forcing and is predictable with a lead-time of 1--2 months. Atmosphere--ocean coupling of this mode is strongest during the austral summer. Its principle component is characterized by mixed interannual and interdecadal fluctuations. There is a strong relationship between the first mode and Antarctic Oscillation (AAO). The AAO can influence the coupled processes in the SIO by modulating the subtropical high. The second mode, accounting for 30% of the total square covariance, represents a 25-year period interdecadal oscillation in the strength of the subtropical anticyclone that is accompanied by fluctuations of a monopole structure in the SST along the 35--25S band. It is caused by subsidence of the atmosphere. The present study also shows that physical processes of both local thermodynamic and ocean circulation in the SIO have a crucial role in the formation of the atmosphere--ocean covariability.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return