Advanced Search
Article Contents

Observational Evidence for the Monin-Obukhov Similarity under All Stability Conditions


doi: 10.1007/s00376-011-1112-6

  • Data collected in the surface layer in a northern suburban area of Nanjing from 15 November to 29 December 2007 were analyzed to examine the Monin-Obukhov similarity for describing the turbulent fluctuations of 3D winds under all stability conditions and to obtain the turbulence characteristics under different weather conditions. The results show that the dimensionless standard deviations of turbulent velocity components (σu/u*, σv/u*, σw/u*) and dimensionless turbulent kinetic energy (TKE) can be well described by ``1/3'' power law relationships under stable, neutral, and unstable conditions, with σu/u*>σv/u*>σw/u*. Land use and land cover changes mainly impact dimensionless standard deviations of horizontal component fluctuations, but they have very little on those of the vertical component. The dimensionless standard deviations of wind components and dimensionless TKE are remarkably affected by different weather conditions; the deviations of horizontal wind component and dimensionless TKE present fog day > clear sky > overcast > cloudy; the trend of the vertical wind component is the reverse. The surface drag coefficient at a Nanjing suburban measurement site during the observation period was obviously higher than at other reported plains and plateau areas, and was approximately one order larger in magnitude than the reported plains areas. Dimensionless standard deviation of temperature declined with increasing |z'/L| with an approximate ``-1/3'' slope in unstable stratification and ``-2/3'' slope in stable stratification.
  • [1] Rui LYU, Fei HU, Lei LIU, Jingjing XU, Xueling CHENG, 2018: High-Order Statistics of Temperature Fluctuations in an Unstable Atmospheric Surface Layer over Grassland, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1265-1276.  doi: 10.1007/s00376-018-7248-x
    [2] Li Xingsheng, Yang Shuowen, 1986: A MODEL STUDY OF THE NOCTURNAL BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 59-71.  doi: 10.1007/BF02680045
    [3] Zhao Ming, Xu Yinzi, Wu Rongsheng, 1989: The Wind Structure in Planetary Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 365-376.  doi: 10.1007/BF02661542
    [4] Lin Naishi, Zhou Zugang, Zhou Liufei, 1998: An Analytical Study on the Urban Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 258-266.  doi: 10.1007/s00376-998-0044-2
    [5] LING Jian, LI Chongyin, ZHOU Wen, JIA Xiaolong, Chidong ZHANG, 2013: Effect of Boundary Layer Latent Heating on MJO Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 101-115.  doi: 10.1007/s00376-012-2031-x
    [6] Zhu Cuijuan, Li Xingsheng, Ye Zhuojia, 1984: AN ANALYSIS OF THE STRUCTURE OF THUNDERSTORM IN THE ATMOSPHERIC BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 105-118.  doi: 10.1007/BF03187621
    [7] MIAO Shiguang, JIANG Weimei, 2004: Large Eddy Simulation and Study of the Urban Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 650-661.  doi: 10.1007/BF02915732
    [8] GUO Xiaofeng, CAI Xuhui, 2005: Footprint Characteristics of Scalar Concentration in the Convective Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 821-830.  doi: 10.1007/BF02918682
    [9] Zhao Ming, 1987: ON THE PARAMETERIZATION OF THE VERTICAL VELOCITY AT THE TOP OF PLANETARY BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 233-239.  doi: 10.1007/BF02677070
    [10] Liu Changsheng, 1988: REMOTE SENSING OF TEMPERATURE PROFILES IN THE BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 67-74.  doi: 10.1007/BF02657346
    [11] Liu Qinyu, Qin Zenghao, 1986: DYNAMICS OF NONLINEAR BAROCLINIC EKMAN BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 424-431.  doi: 10.1007/BF02657932
    [12] LIU Huizhi, Sang Jianguo, 2011: Numerical Simulation of Roll Vortices in the Convective Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 477-482.  doi: 10.1007/s00376-010-9229-6
    [13] Zhao Bolin, Zhen Jinming, Hu Chengda, Du Jinlin, Zhu Yuanjing, Zhang Chengxiang, 1992: Study on Clouds and Marine Atmospheric Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 383-396.  doi: 10.1007/BF02677072
    [14] Meiying DONG, Chunxiao JI, Feng CHEN, Yuqing WANG, 2019: Numerical Study of Boundary Layer Structure and Rainfall after Landfall of Typhoon Fitow (2013): Sensitivity to Planetary Boundary Layer Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 431-450.  doi: 10.1007/s00376-018-7281-9
    [15] Hui-Wen LAI, Fuqing ZHANG, Eugene E. CLOTHIAUX, David R. STAUFFER, Brian J. GAUDET, Johannes VERLINDE, Deliang CHEN, 2020: Modeling Arctic Boundary Layer Cloud Streets at Grey-zone Resolutions, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 42-56.  doi: 10.1007/s00376-019-9105-y
    [16] Xu Liren, Zhao Ming, 2000: The Influences of Boundary Layer Parameterization Schemes on Mesoscale Heavy Rain System, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 458-472.  doi: 10.1007/s00376-000-0036-3
    [17] Li Xin, Hu Fei, Liu Gang, Hong Zhongxiang, 2001: Multi-scale Fractal Characteristics of Atmospheric Boundary-Layer Turbulence, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 787-792.
    [18] Tan Zhemin, Wang Yuan, 2002: Wind Structure in an Intermediate Boundary Layer Model Based on Ekman Momentum Approximation, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 266-278.  doi: 10.1007/s00376-002-0021-0
    [19] HU Yinqiao, ZUO Hongchao, 2003: The Influence of Convergence Movement on Turbulent Transportation in the Atmospheric Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 794-798.  doi: 10.1007/BF02915404
    [20] Hongxiong XU, Dajun ZHAO, 2021: Effect of the Vertical Diffusion of Moisture in the Planetary Boundary Layer on an Idealized Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1889-1904.  doi: 10.1007/s00376-021-1016-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2012
Manuscript revised: 10 March 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Observational Evidence for the Monin-Obukhov Similarity under All Stability Conditions

  • 1. Key Laboratory of Meteorological Disaster of Ministry of Education, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044;Key Laboratory of Meteorological Disaster of Ministry of Education, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044;Key Laboratory of Meteorological Disaster of Ministry of Education, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044;Key Laboratory of Meteorological Disaster of Ministry of Education, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044;Key Laboratory of Meteorological Disaster of Ministry of Education, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044;Key Laboratory of Meteorological Disaster of Ministry of Education, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044

Abstract: Data collected in the surface layer in a northern suburban area of Nanjing from 15 November to 29 December 2007 were analyzed to examine the Monin-Obukhov similarity for describing the turbulent fluctuations of 3D winds under all stability conditions and to obtain the turbulence characteristics under different weather conditions. The results show that the dimensionless standard deviations of turbulent velocity components (σu/u*, σv/u*, σw/u*) and dimensionless turbulent kinetic energy (TKE) can be well described by ``1/3'' power law relationships under stable, neutral, and unstable conditions, with σu/u*>σv/u*>σw/u*. Land use and land cover changes mainly impact dimensionless standard deviations of horizontal component fluctuations, but they have very little on those of the vertical component. The dimensionless standard deviations of wind components and dimensionless TKE are remarkably affected by different weather conditions; the deviations of horizontal wind component and dimensionless TKE present fog day > clear sky > overcast > cloudy; the trend of the vertical wind component is the reverse. The surface drag coefficient at a Nanjing suburban measurement site during the observation period was obviously higher than at other reported plains and plateau areas, and was approximately one order larger in magnitude than the reported plains areas. Dimensionless standard deviation of temperature declined with increasing |z'/L| with an approximate ``-1/3'' slope in unstable stratification and ``-2/3'' slope in stable stratification.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return