Advanced Search
Article Contents

A Possible Mechanism of the Impact of Atmosphere--Ocean Interaction on the Activity of Tropical Cyclones Affecting China


doi: 10.1007/s00376-012-1028-9

  • In this study, tropical cyclone data from China Meteorological Administration (CMA) and the ECMWF reanalysis data for the period 1958--2001 was used to propose a possible mechanism for the impacts of air--sea interaction on the activity of tropical cyclones (TCs) affecting China. The frequency of TCs affecting China over past 40 years has trended downward, while during the same period, the air--sea interaction in the two key areas of the Pacific region has significantly weakened. Our diagnoses and simulations suggest that air--sea interactions in the central North Pacific tropics and subtropics (Area 1) have an important role in adjusting typhoon activities in the Northwest Pacific in general, and especially in TC activity affecting China. On the contrary, impacts of the air--sea interaction in the eastern part of the South Pacific tropics (Area 2) were found to be rather limited. As both observational analysis and modeling studies show that, in the past four decades and beyond, the weakening trend of the latent heat released from Area 1 matched well with the decreasing Northwest Pacific TC frequency derived from CMA datasets. Results also showed that the weakening trend of latent heat flux in the area was most likely due to the decreasing TC frequency over the Northwest Pacific, including those affecting China. Although our preliminary analysis revealed a possible mechanism through which the air--sea interaction may adjust the genesis conditions for TCs, which eventually affect China, other relevant questions, such as how TC tracks and impacts are affected by these trends, remain unanswered. Further in-depth investigations are required.
  • [1] XU Xingkui, Jason K. LEVY, 2011: The Impact of Agricultural Practices in China on Land-Atmosphere Interactions, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 821-831.  doi: 10.1007/s00376-010-0007-2
    [2] LI Xiaofan, SHEN Xinyong, LIU Jia, 2014: Effects of Doubled Carbon Dioxide on Rainfall Responses to Large-Scale Forcing: A Two-Dimensional Cloud-Resolving Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 525-531.  doi: 10.1007/s00376-013-3030-2
    [3] LIANG Feng, TAO Shiyan, WEI Jie, BUEH Cholaw, 2011: Variation in Summer Rainfall in North China during the Period 1956--2007 and Links with Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 363-374.  doi: 10.1007/s00376-010-9220-2
    [4] YU Yongqiang, ZHENG Weipeng, WANG Bin, LIU Hailong, LIU Jiping, 2011: Versions g1.0 and g1.1 of the LASG/IAP Flexible Global Ocean--Atmosphere--Land System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 99-117.  doi: 10.1007/s00376-010-9112-5
    [5] ZHU Peijun, ZHENG Yongguang, ZHANG Chunxi, TAO Zuyu, 2005: A Study of the Extratropical Transformation of Typhoon Winnie (1997), ADVANCES IN ATMOSPHERIC SCIENCES, 22, 730-740.  doi: 10.1007/BF02918716
    [6] Zhixuan WANG, Jilin SUN, Jiancheng WU, Fangyue NING, Weiqi CHEN, 2020: Attribution of Persistent Precipitation in the Yangtze–Huaihe River Basin during February 2019, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1389-1404.  doi: 10.1007/s00376-020-0107-6
    [7] Qu Shaohou, 1989: Observation Research of the Turbulent Fluxes of Momentum, Sensible Heat and Latent Heat over the West Pacific Tropical Ocean Area, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 254-264.  doi: 10.1007/BF02658021
    [8] Li Chongyin, Han-Ru Cho, Jough-Tai Wang, 2002: CISK Kelvin Wave with Evaporation-Wind Feedback and Air-Sea Interaction A Further Study of Tropical Intraseasonal Oscillation Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 379-390.  doi: 10.1007/s00376-002-0073-1
    [9] Ye Zhuojia, Jia Xinyuan, 1991: The Impact of Soil Moisture Availability upon the Partition of Net Radiation into Sensible and Latent Heat Fluxes, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 339-350.  doi: 10.1007/BF02919616
    [10] Long Baosen, 1989: The Latent and Sensible Heat Fluxes over the Western Tropical Pacific and Its Relationship to ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 467-474.  doi: 10.1007/BF02659080
    [11] Fu Congbin, Henry Diaz, Fan Huijun, 1992: Variability in Latent Heat Flux over the Tropical Pacific in Association with Recent Two ENSO Events, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 351-358.  doi: 10.1007/BF02656945
    [12] Zhang Renhe, Chao Jiping, 1993: Unstable Tropical Air-Sea Interaction Waves and Their Physical Mechanisms, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 61-70.  doi: 10.1007/BF02656954
    [13] PU Shuzhen, ZHAO Jinping, YU Weidong, ZHAO Yongping, YANG Bo, 2004: Progress of Large-Scale Air-Sea Interaction Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 383-398.  doi: 10.1007/BF02915566
    [14] GAO Rong, WEI Zhigang, DONG Wenjie, ZHONG Hailing, 2005: Impact of the Anomalous Thawing in the Tibetan Plateau on Summer Precipitation in China and Its Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 238-245.  doi: 10.1007/BF02918513
    [15] Anmin DUAN, Ruizao SUN, Jinhai HE, 2017: Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land-Air-Sea Interaction Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 157-168.  doi: 10.1007/s00376-016-6008-z
    [16] Marco Y.-T. LEUNG, Dongxiao WANG, Wen ZHOU, Yuntao JIAN, 2023: Extended Impact of Cold Air Invasions in East Asia in Response to a Warm South China Sea and Philippine Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 531-540.  doi: 10.1007/s00376-022-2096-0
    [17] Ying NA, Riyu LU, Bing LU, Min CHEN, Shiguang MIAO, 2019: Impact of the Horizontal Heat Flux in the Mixed Layer on an Extreme Heat Event in North China: A Case Study, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 133-142.  doi: 10.1007/s00376-018-8133-3
    [18] LIU Bin, GUAN Changlong, Li'an XIE, ZHAO Dongliang, 2012: An Investigation of the Effects of Wave State and Sea Spray on an Idealized Typhoon Using an Air--Sea Coupled Modeling System, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 391-406.  doi: 10.1007/s00376-011-1059-7
    [19] CHEN Jiepeng, WU Renguang, WEN Zhiping, 2012: Contribution of South China Sea Tropical Cyclones to an Increase in Southern China Summer Rainfall Around 1993, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 585-598.  doi: 10.1007/s00376-011-1181-6
    [20] CHEN Wen, ZHU Deqin, LIU Huizhi, SUN Shufen, 2009: Land-Air Interaction over Arid/Semi-arid Areas in China and Its Impact on the East Asian Summer Monsoon. Part I: Calibration of the Land Surface Model (BATS) Using Multicriteria Methods, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1088-1098.  doi: 10.1007/s00376-009-8187-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2012
Manuscript revised: 10 July 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Possible Mechanism of the Impact of Atmosphere--Ocean Interaction on the Activity of Tropical Cyclones Affecting China

  • 1. Laboratory for Climate Studies, China Meteorological Administration, Beijing 100081,Key Laboratory of Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing 210093, Shanghai Typhoon Institute, China Meteorological Adminstration, Shanghai 200030,Atmospheric Physics Research Institute of Chinese Academy of Sciences, Beijing 100029,Laboratory for Climate Studies, China Meteorological Administration, Beijing 100081,Key Laboratory of Mesoscale Severe Weather of Ministry of Education, Nanjing University, Nanjing 210093

Abstract: In this study, tropical cyclone data from China Meteorological Administration (CMA) and the ECMWF reanalysis data for the period 1958--2001 was used to propose a possible mechanism for the impacts of air--sea interaction on the activity of tropical cyclones (TCs) affecting China. The frequency of TCs affecting China over past 40 years has trended downward, while during the same period, the air--sea interaction in the two key areas of the Pacific region has significantly weakened. Our diagnoses and simulations suggest that air--sea interactions in the central North Pacific tropics and subtropics (Area 1) have an important role in adjusting typhoon activities in the Northwest Pacific in general, and especially in TC activity affecting China. On the contrary, impacts of the air--sea interaction in the eastern part of the South Pacific tropics (Area 2) were found to be rather limited. As both observational analysis and modeling studies show that, in the past four decades and beyond, the weakening trend of the latent heat released from Area 1 matched well with the decreasing Northwest Pacific TC frequency derived from CMA datasets. Results also showed that the weakening trend of latent heat flux in the area was most likely due to the decreasing TC frequency over the Northwest Pacific, including those affecting China. Although our preliminary analysis revealed a possible mechanism through which the air--sea interaction may adjust the genesis conditions for TCs, which eventually affect China, other relevant questions, such as how TC tracks and impacts are affected by these trends, remain unanswered. Further in-depth investigations are required.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return