Advanced Search
Article Contents

Effect of Length Scale Tuning of Background Error in WRF-3DVAR System on Assimilation of High-Resolution Surface Data for Heavy Rainfall Simulation


doi: 10.1007/s00376-012-1183-z

  • We investigated the impact of tuning the length scale of the background error covariance in the Weather Research and Forecasting (WRF) three-dimensional variational assimilation (3DVAR) system. In particular, we studied the effect of this parameter on the assimilation of high-resolution surface data for heavy rainfall forecasts associated with mesoscale convective systems over the Korean Peninsula. In the assimilation of high-resolution surface data, the National Meteorological Center method tended to exaggerate the length scale that determined the shape and extent to which observed information spreads out. In this study, we used the difference between observation and background data to tune the length scale in the assimilation of high-resolution surface data. The resulting assimilation clearly showed that the analysis with the tuned length scale was able to reproduce the small-scale features of the ideal field effectively. We also investigated the effect of a double-iteration method with two different length scales, representing large and small-length scales in the WRF-3DVAR. This method reflected the large and small-scale features of observed information in the model fields. The quantitative accuracy of the precipitation forecast using this double iteration with two different length scales for heavy rainfall was high; results were in good agreement with observations in terms of the maximum rainfall amount and equitable threat scores. The improved forecast in the experiment resulted from the development of well-identified mesoscale convective systems by intensified low-level winds and their consequent convergence near the rainfall area.
  • [1] Jo-Han LEE, Dong-Kyou LEE, Hyun-Ha LEE, Yonghan CHOI, Hyung-Woo KIM, 2010: Radar Data Assimilation for the Simulation of Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1025-1042.  doi: 10.1007/s00376-010-9162-8
    [2] Ji-Hyun HA, Hyung-Woo KIM, Dong-Kyou LEE, 2011: Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 573-590.  doi: 10.1007/s00376-010-0035-y
    [3] Ui-Yong BYUN, Jinkyu HONG, Song-You HONG, Hyeyum Hailey SHIN, 2015: Numerical Simulations of Heavy Rainfall over Central Korea on 21 September 2010 Using the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 855-869.  doi: 10.1007/s00376-014-4075-6
    [4] HOU Tuanjie, Fanyou KONG, CHEN Xunlai, LEI Hengchi, HU Zhaoxia, 2015: Evaluation of Radar and Automatic Weather Station Data Assimilation for a Heavy Rainfall Event in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 967-978.  doi: 10.1007/s00376-014-4155-7
    [5] Jiwon Hwang, Dong-Hyun Cha, Donghyuck Yoon, Tae-Young Goo, Sueng-Pil Jung, 2024: Effects of Initial and Boundary Conditions on Heavy Rainfall Simulation over the Yellow Sea and the Korean Peninsula: Comparison of ECMWF and NCEP Analysis Data Effects and Verification with Dropsonde Observation, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3232-9
    [6] Cheng Minghu, He Huizhong, Mao Dongyan, Qi Yanjun, Cui Zhehu, Zhou Fengxian, 2001: Study of 1998 Heavy Rainfall over the Yangtze River Basin Using TRMM Data, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 387-396.  doi: 10.1007/BF02919317
    [7] Xingchao CHEN, Kun ZHAO, Juanzhen SUN, Bowen ZHOU, Wen-Chau LEE, 2016: Assimilating Surface Observations in a Four-Dimensional Variational Doppler Radar Data Assimilation System to Improve the Analysis and Forecast of a Squall Line Case, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1106-1119.  doi: 10.1007/s00376-016-5290-0
    [8] ZHOU Lingli, DU Huiliang, ZHAI Guoqing, WANG Donghai, 2013: Numerical Simulation of the Sudden Rainstorm Associated with the Remnants of Typhoon Meranti (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1353-1372.  doi: 10.1007/s00376-012-2127-3
    [9] XU Zhifang, GE Wenzhong, DANG Renqing, Toshio IGUCHI, Takao TAKADA, 2003: Application of TRMM/PR Data for Numerical Simulations with Mesoscale Model MM5, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 185-193.  doi: 10.1007/s00376-003-0003-x
    [10] Iman ROUSTA, Mehdi DOOSTKAMIAN, Esmaeil HAGHIGHI, Hamid Reza GHAFARIAN MALAMIRI, Parvane YARAHMADI, 2017: Analysis of Spatial Autocorrelation Patterns of Heavy and Super-Heavy Rainfall in Iran, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1069-1081.  doi: 10.1007/s00376-017-6227-y
    [11] SUN Jianhua, ZHANG Xiaoling, QI Linlin, ZHAO Sixiong, 2005: An Analysis of a Meso-β System in a Mei-yu Front Using the Intensive Observation Data During CHeRES 2002, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 278-289.  doi: 10.1007/BF02918517
    [12] Xiuzhen LI, Wen ZHOU, Yongqin David CHEN, 2016: Detecting the Origins of Moisture over Southeast China: Seasonal Variation and Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 319-329.  doi: 10.1007/s00376-015-4197-5
    [13] Chang-Kyun PARK, Minhee CHANG, Chang-Hoi HO, Kyung-Ja HA, Jinwon KIM, Byung-Ju SOHN, 2021: Two Types of Diurnal Variations in Heavy Rainfall during July over Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2201-2211.  doi: 10.1007/s00376-021-1178-8
    [14] WANG Shuzhou, YU Entao, WANG Huijun, 2012: A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-Way Nesting Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 731-743.  doi: 10.1007/s00376-012-1176-y
    [15] Huizhen YU, Zhiyong MENG, 2022: The Impact of Moist Physics on the Sensitive Area Identification for Heavy Rainfall Associated Weather Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 684-696.  doi: 10.1007/s00376-021-0278-9
    [16] WU Liji, HUANG Ronghui, HE Haiyan, SHAO Yaping, WEN Zhiping, 2010: Synoptic Characteristics of Heavy Rainfall Events in Pre-monsoon Season in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 315-327.  doi: 10.1007/s00376-009-8219-z
    [17] Rudi XIA, Yali LUO, Da-Lin ZHANG, Mingxin LI, Xinghua BAO, Jisong SUN, 2021: On the Diurnal Cycle of Heavy Rainfall over the Sichuan Basin during 10–18 August 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2183-2200.  doi: 10.1007/s00376-021-1118-7
    [18] A.K.Kulkarmi, B.N.Mandal, R.S.Sangam, 1994: A Study of Heavy Rainfall of 8-10 June, 1991 over Maharashtra, India, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 353-366.  doi: 10.1007/BF02658155
    [19] Seung-Woo LEE, Dong-Kyou LEE, Dong-Eon CHANG, 2011: Impact of Horizontal Resolution and Cumulus Parameterization Scheme on the Simulation of Heavy Rainfall Events over the Korean Peninsula, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1-15.  doi: 10.1007/s00376-010-9217-x
    [20] Jeong-Gyun PARK, Dong-Kyou LEE, 2011: Evaluation of Heavy Rainfall Model Forecasts over the Korean Peninsula Using Different Physical Parameterization Schemes and Horizontal Resolution, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1233-1245.  doi: 10.1007/s00376-011-0058-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2012
Manuscript revised: 10 November 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Effect of Length Scale Tuning of Background Error in WRF-3DVAR System on Assimilation of High-Resolution Surface Data for Heavy Rainfall Simulation

  • 1. Atmospheric Sciences Program, School of Earth and Environmental Sciences, Seoul National University, Seoul 151--747, Korea;Atmospheric Sciences Program, School of Earth and Environmental Sciences, Seoul National University, Seoul 151--747, Korea

Abstract: We investigated the impact of tuning the length scale of the background error covariance in the Weather Research and Forecasting (WRF) three-dimensional variational assimilation (3DVAR) system. In particular, we studied the effect of this parameter on the assimilation of high-resolution surface data for heavy rainfall forecasts associated with mesoscale convective systems over the Korean Peninsula. In the assimilation of high-resolution surface data, the National Meteorological Center method tended to exaggerate the length scale that determined the shape and extent to which observed information spreads out. In this study, we used the difference between observation and background data to tune the length scale in the assimilation of high-resolution surface data. The resulting assimilation clearly showed that the analysis with the tuned length scale was able to reproduce the small-scale features of the ideal field effectively. We also investigated the effect of a double-iteration method with two different length scales, representing large and small-length scales in the WRF-3DVAR. This method reflected the large and small-scale features of observed information in the model fields. The quantitative accuracy of the precipitation forecast using this double iteration with two different length scales for heavy rainfall was high; results were in good agreement with observations in terms of the maximum rainfall amount and equitable threat scores. The improved forecast in the experiment resulted from the development of well-identified mesoscale convective systems by intensified low-level winds and their consequent convergence near the rainfall area.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return