Advanced Search
Article Contents

Comparison of Precipitation Observations from a Prototype Space-based Cloud Radar and Ground-based Radars


doi: 10.1007/s00376-012-1233-6

  • A prototype space-based cloud radar has been developed and was installed on an airplane to observe a precipitation system over Tianjin, China in July 2010. Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths, spatial resolutions and platform radars is presented. The reflectivity biases, correlation coefficients and standard deviations between the radars are analyzed. The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution. The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB, and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity, but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter. The measured reflectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar), and 13.7 dB stronger than that by the ground-based cloud radar. The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar. This study could provide a method for the quantitative examination of the observation ability for space-based radars.
  • [1] WU Chong, and LIU Liping, 2014: Comparison of the Observation Capability of an X-band Phased-array Radar with an X-band Doppler Radar and S-band Operational Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 814-824.  doi: 10.1007/s00376-013-3072-5
    [2] DING Yihui, LI Chongyin, LIU Yanju, 2004: Overview of the South China Sea Monsoon Experiment, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 343-360.  doi: 10.1007/BF02915563
    [3] Xi WANG, Zheng GUO, Yipeng HUANG, Hongjie FAN, Wanbiao LI, 2017: A Cloud Detection Scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT), ADVANCES IN ATMOSPHERIC SCIENCES, 34, 16-25.  doi: 10.1007/s00376-016-6033-y
    [4] Yi-Xuan SHOU, Feng LU, Hui LIU, Peng CUI, Shaowen SHOU, Jian LIU, 2019: Satellite-based Observational Study of the Tibetan Plateau Vortex: Features of Deep Convective Cloud Tops, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 189-205.  doi: 10.1007/s00376-018-8049-y
    [5] ZONG Rong, LIU Liping, YIN Yan, 2013: Relationship between Cloud Characteristics and Radar Reflectivity Based on Aircraft and Cloud Radar Co-observations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1275-1286.  doi: 10.1007/s00376-013-2090-7
    [6] Yong-Sang CHOI, Chang-Hoi HO, Sang-Woo KIM, Richard S. LINDZEN, 2010: Observational Diagnosis of Cloud Phase in the Winter Antarctic Atmosphere for Parameterizations in Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1233-1245.  doi: 10.1007/s00376-010-9175-3
    [7] Jiefan YANG, Hengchi LEI, Tuanjie HOU, 2017: Observational Evidence of High Ice Concentration in a Shallow Convective Cloud Embedded in Stratiform Cloud over North China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 509-520.  doi: 10.1007/s00376-016-6079-x
    [8] WANG Pengyun, YANG Jing, 2003: Observation and Numerical Simulation of Cloud Physical Processes Associated with Torrential Rain of the Meiyu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 77-96.  doi: 10.1007/BF03342052
    [9] Myoung-Joo LEE, Ki-Ho CHANG, Gyun-Myoung PARK, Jin-Yim JEONG, Ha-Young YANG, Ki-Deok JEONG, Joo-Wan CHA, Sung-Soo YUM, Jae-Cheol NAM, Kyungsik KIM, Byung-Chul CHOI, 2009: Preliminary Results of the Ground-Based Orographic Snow Enhancement Experiment for the Easterly Cold Fog (Cloud) at Daegwallyeong during the 2006 Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 222-228.  doi: 10.1007/s00376-009-0222-x
    [10] Hong WANG, Wenqing WANG, Jun WANG, Dianli GONG, Dianguo ZHANG, Ling ZHANG, Qiuchen ZHANG, 2021: Rainfall Microphysical Properties of Landfalling Typhoon Yagi (201814) Based on the Observations of Micro Rain Radar and Cloud Radar in Shandong, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 994-1011.  doi: 10.1007/s00376-021-0062-x
    [11] Ling YANG, Yun WANG, Zhongke WANG, Qian YANG, Xingang FAN, Fa TAO, Xiaoqiong ZHEN, Zhipeng YANG, 2020: Automatic Identification of Clear-Air Echoes Based on Millimeter-wave Cloud Radar Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 912-924.  doi: 10.1007/s00376-020-9270-z
    [12] Lin Hai, Xin Miaoxin, Wei Chong, Hao Yaokui, Zou Shouxiang, 1985: GROUND-BASED REMOTE SENSING OF LWC IN CLOUD AND RAINFALL BY A COMBINED DUAL-WAVELENGTH RADAR-RADIOMETER SYSTEM, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 93-103.  doi: 10.1007/BF03179741
    [13] ZHONG Lingzhi, LIU Liping, DENG Min, ZHOU Xiuji, 2012: Retrieving Microphysical Properties and Air Motion of Cirrus Clouds Based on the Doppler Moments Method Using Cloud Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 611-622.  doi: 10.1007/s00376-011-0112-x
    [14] SUN Lan, XUE Yongkang, 2004: Validation of SSiB Model over Grassland with CHeRES Field Experiment Data in 2001, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 547-556.  doi: 10.1007/BF02915722
    [15] YANG Junli, SHEN Xueshun, 2011: The Construction of SCM in GRAPES and Its Applications in Two Field Experiment Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 534-550.  doi: 10.1007/s00376-010-0062-8
    [16] Bo LIU, Juan HUO, Daren LYU, Xin WANG, 2021: Assessment of FY-4A and Himawari-8 Cloud Top Height Retrieval through Comparison with Ground-Based Millimeter Radar at Sites in Tibet and Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1334-1350.  doi: 10.1007/s00376-021-0337-2
    [17] Su-Bin OH, Yeon-Hee KIM, Ki-Hoon KIM, Chun-Ho CHO, Eunha LIM, 2016: Verification and Correction of Cloud Base and Top Height Retrievals from Ka-band Cloud Radar in Boseong, Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 73-84.  doi: 10.1007/s00376-015-5058-y
    [18] Juan HUO, Yongheng BI, Daren Lü, Shu DUAN, 2019: Cloud Classification and Distribution of Cloud Types in Beijing Using Ka-Band Radar Data, ADVANCES IN ATMOSPHERIC SCIENCES, , 793-803.  doi: 10.1007/s00376-019-8272-1
    [19] Xuanming ZHAO, Jiang ZHU, Lijing CHENG, Yubao LIU, Yuewei LIU, 2020: An Observing System Simulation Experiment to Assess the Potential Impact of a Virtual Mobile Communication Tower–based Observation Network on Weather Forecasting Accuracy in China. Part 1: Weather Stations with a Typical Mobile Tower Height of 40 m, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 617-633.  doi: 10.1007/s00376-020-9058-1
    [20] Xuanming ZHAO, Jiang ZHU, Lijing CHENG, Yubao LIU, Yuewei LIU, 2020: An Observing System Simulation Experiment to Assess the Potential Impact of a Virtual Mobile Communication Tower–based Observation Network on Weather Forecasting Accuracy in China. Part 1: Weather Stations with a Typical Mobile Tower Height of 40 m, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-020-9058-1-bug

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2012
Manuscript revised: 10 November 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Comparison of Precipitation Observations from a Prototype Space-based Cloud Radar and Ground-based Radars

  • 1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081;Science and Technology on Milimeter-wave Laboratory, Beijing 100854;National Satellite Meteorological Center, Beijing 100081;Science and Technology on Milimeter-wave Laboratory, Beijing 100854;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081

Abstract: A prototype space-based cloud radar has been developed and was installed on an airplane to observe a precipitation system over Tianjin, China in July 2010. Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths, spatial resolutions and platform radars is presented. The reflectivity biases, correlation coefficients and standard deviations between the radars are analyzed. The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution. The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB, and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity, but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter. The measured reflectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar), and 13.7 dB stronger than that by the ground-based cloud radar. The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar. This study could provide a method for the quantitative examination of the observation ability for space-based radars.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return