Advanced Search
Article Contents

Analysis of the Role Played by Circulation in the Persistent Precipitation over South China in June 2010


doi: 10.1007/s00376-012-2018-7

  • South China (SC) experienced persistent heavy rain in June 2010. The climatic anomalies and related mechanism are analyzed in this study. Results show that the large-scale circulation pattern favorable for precipitation was maintained. In the upper level, the South Asian High and westerly jet stream provided a divergent circulation over SC. In the middle and low levels, an anomalous strong subtropical high (STH) extended to the South China Sea. The southwesterly monsoon flow along the northwest flank of the STH transported abundant water vapor from the western North Pacific, the Bay of Bengal, and the South China Sea to SC. The precipitation can be classified into two types: the West Siberia low (WSL)-induced low-level cyclone mode, and the STH-induced low-level jet mode. STH and WSL indices are defined to estimate the influence of these two systems, respectively. Analysis shows that both are critical for precipitation, but their respective contributions differ from year to year. In 2010, both were important factors for the heavy rainfall in June.
  • [1] SU Qin, LU Riyu, LI Chaofan, 2014: Large-scale Circulation Anomalies Associated with Interannual Variation in Monthly Rainfall over South China from May to August, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 273-282.  doi: 10.1007/s00376-013-3051-x
    [2] NIU Ning, LI Jianping, 2008: Interannual Variability of Autumn Precipitation over South China and its Relation to Atmospheric Circulation and SST Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 117-125.  doi: 10.1007/s00376-008-0117-2
    [3] Se-Hwan YANG, LI Chaofan, and LU Riyu, 2014: Predictability of Winter Rainfall in South China as Demonstrated by the Coupled Models of ENSEMBLES, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 779-786.  doi: 10.1007/s00376-013-3172-2
    [4] NING Liang, QIAN Yongfu, 2009: Interdecadal Change in Extreme Precipitation over South China and Its Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 109-118.  doi: 10.1007/s00376-009-0109-x
    [5] Hongbo LIU, Ruojing YAN, Bin WANG, Guanghua CHEN, Jian LING, Shenming FU, 2023: Multiscale Combined Action and Disturbance Characteristics of Pre-summer Extreme Precipitation Events over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 824-842.  doi: 10.1007/s00376-021-1172-1
    [6] HONG Bo, WANG Dongxiao, 2008: Sensitivity Study of the Seasonal Mean Circulation in the Northern South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 824-840.  doi: 10.1007/s00376-008-0824-8
    [7] LIU Ge, WU Renguang, SUN Shuqing, WANG Huimei, 2015: Synergistic Contribution of Precipitation Anomalies over Northwestern India and the South China Sea to High Temperature over the Yangtze River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1255-1265.  doi: 10.1007/s00376-015-4280-y
    [8] Tingting HAN, Shengping HE, Huijun WANG, Xin HAO, 2019: Variation in Principal Modes of Midsummer Precipitation over Northeast China and Its Associated Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 55-64.  doi: 10.1007/s00376-018-8072-z
    [9] JIE Weihua, WU Tongwen, WANG Jun, LI Weijing, LIU Xiangwen, 2014: Improvement of 6-15 Day Precipitation Forecasts Using a Time-Lagged Ensemble Method, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 293-304.  doi: 10.1007/s00376-013-3037-8
    [10] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [11] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [12] Xinyu LI, Riyu LU, Gen LI, 2021: Different Configurations of Interannual Variability of the Western North Pacific Subtropical High and East Asian Westerly Jet in Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 931-942.  doi: 10.1007/s00376-021-0339-0
    [13] Athanassios A. ARGIRIOU, Zhen LI, Vasileios ARMAOS, Anna MAMARA, Yingling SHI, Zhongwei YAN, 2023: Homogenised Monthly and Daily Temperature and Precipitation Time Series in China and Greece since 1960, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1326-1336.  doi: 10.1007/s00376-022-2246-4
    [14] YANG Hui, SUN Shuqing, 2005: The Characteristics of Longitudinal Movement of the Subtropical High in the Western Pacific in the Pre-rainy Season in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 392-400.  doi: 10.1007/BF02918752
    [15] Debashis NATH, Wen CHEN, 2016: Impact of Planetary Wave Reflection on Tropospheric Blocking over the Urals-Siberia Region in January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 309-318.  doi: 10.1007/s00376-015-5052-4
    [16] Meng YAN, Johnny C. L. CHAN, Kun ZHAO, 2020: Impacts of Urbanization on the Precipitation Characteristics in Guangdong Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 696-706.  doi: 10.1007/s00376-020-9218-3
    [17] Tian FENG, Fumin REN, Da-Lin ZHANG, Guoping LI, Wenyu QIU, Hui YANG, 2020: Sideswiping Tropical Cyclones and Their Associated Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 707-717.  doi: 10.1007/s00376-020-9224-5
    [18] WANG Shaowu, ZHU Jinhong, CAI Jingning, 2004: Interdecadal Variability of Temperature and Precipitation in China since 1880, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 307-313.  doi: 10.1007/BF02915560
    [19] ZHANG Xinping, JIN Huijun, SUN Weizhen, 2006: Stable Isotopic Variations in Precipitation in Southwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 649-658.  doi: 10.1007/s00376-006-0649-2
    [20] Dong ZHENG, Yijun ZHANG, Qing MENG, Luwen CHEN, Jianru DAN, 2016: Climatology of Lightning Activity in South China and Its Relationships to Precipitation and Convective Available Potential Energy, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 365-376.  doi: 10.1007/s00376-015-5124-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2012
Manuscript revised: 10 July 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Analysis of the Role Played by Circulation in the Persistent Precipitation over South China in June 2010

  • 1. Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, Graduate University of the Chinese Academy of Sciences, Beijing 100049;Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190;Guy Carpenter Asia-Pacific Climate Impact Center, School of Energy and Environment, City University of Hong Kong, Hong Kong

Abstract: South China (SC) experienced persistent heavy rain in June 2010. The climatic anomalies and related mechanism are analyzed in this study. Results show that the large-scale circulation pattern favorable for precipitation was maintained. In the upper level, the South Asian High and westerly jet stream provided a divergent circulation over SC. In the middle and low levels, an anomalous strong subtropical high (STH) extended to the South China Sea. The southwesterly monsoon flow along the northwest flank of the STH transported abundant water vapor from the western North Pacific, the Bay of Bengal, and the South China Sea to SC. The precipitation can be classified into two types: the West Siberia low (WSL)-induced low-level cyclone mode, and the STH-induced low-level jet mode. STH and WSL indices are defined to estimate the influence of these two systems, respectively. Analysis shows that both are critical for precipitation, but their respective contributions differ from year to year. In 2010, both were important factors for the heavy rainfall in June.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return