Advanced Search
Article Contents

The Application of Flux-Form Semi-Lagrangian Transport Scheme in a Spectral Atmosphere Model


doi: 10.1007/s00376-012-2039-2

  • A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes. Importantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.
  • [1] JIE Weihua, WU Tongwen, WANG Jun, LI Weijing, LIU Xiangwen, 2014: Improvement of 6-15 Day Precipitation Forecasts Using a Time-Lagged Ensemble Method, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 293-304.  doi: 10.1007/s00376-013-3037-8
    [2] Marcus JOHNSON, Ming XUE, Youngsun JUNG, 2024: Comparison of a Spectral Bin and Two Multi-Moment Bulk Microphysics Schemes for Supercell Simulation: Investigation into Key Processes Responsible for Hydrometeor Distributions and Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3069-7
    [3] LIU Ge, WU Renguang, ZHANG Yuanzhi, and NAN Sulan, 2014: The Summer Snow Cover Anomaly over the Tibetan Plateau and Its Association with Simultaneous Precipitation over the Mei-yu-Baiu region, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 755-764.  doi: 10.1007/s00376-013-3183-z
    [4] CHEN Hua, GUO Jing, XIONG Wei, GUO Shenglian, Chong-Yu XU, 2010: Downscaling GCMs Using the Smooth Support Vector Machine Method to Predict Daily Precipitation in the Hanjiang Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 274-284.  doi: 10.1007/s00376-009-8071-1
    [5] Tingting HAN, Shengping HE, Huijun WANG, Xin HAO, 2019: Variation in Principal Modes of Midsummer Precipitation over Northeast China and Its Associated Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 55-64.  doi: 10.1007/s00376-018-8072-z
    [6] Vinícius dos SANTOS, Peter MARSHALL FLEMING, Luís HENRIQUE MANCINI, Stela DALVA SANTOS COTA, Graziele Beatriz de LIMA, Rafaela RODRIGUES GOMES, Roberto Eduardo KIRCHHEIM, Ricardo SANCHÉZ-MURILLO, Didier GASTMANS, 2022: Distinguishing the Regional Atmospheric Controls on Precipitation Isotopic Variability in the Central-Southeast Portion of Brazil, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1693-1708.  doi: 10.1007/s00376-022-1367-0
    [7] Jie ZHANG, Tongwen WU, Fang ZHANG, Kalli FURTADO, Xiaoge XIN, Xueli SHI, Jianglong LI, Min CHU, Li ZHANG, Qianxia LIU, Jinghui Yan, Min WEI, Qiang MA, 2021: BCC-ESM1 Model Datasets for the CMIP6 Aerosol Chemistry Model Intercomparison Project (AerChemMIP), ADVANCES IN ATMOSPHERIC SCIENCES, 38, 317-328.  doi: 10.1007/s00376-020-0151-2
    [8] Jiangbo JIN, Duoying JI, Xiao DONG, Kece FEI, Run GUO, Juanxiong HE, Yi YU, Zhaoyang CHAI, He ZHANG, Dongling ZHANG, Kangjun CHEN, Qingcun ZENG, 2024: CAS-ESM2.0 Dataset for the Carbon Dioxide Removal Model Intercomparison Project (CDRMIP), ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3089-3
    [9] REN Guoyu, DING Yihui, ZHAO Zongci, ZHENG Jingyun, WU Tongwen, TANG Guoli, XU Ying, 2012: Recent Progress in Studies of Climate Change in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 958-977.  doi: 10.1007/s00376-012-1200-2
    [10] Athanassios A. ARGIRIOU, Zhen LI, Vasileios ARMAOS, Anna MAMARA, Yingling SHI, Zhongwei YAN, 2023: Homogenised Monthly and Daily Temperature and Precipitation Time Series in China and Greece since 1960, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1326-1336.  doi: 10.1007/s00376-022-2246-4
    [11] Liwei ZOU, Tianjun ZHOU, Jianping TANG, Hailong LIU, 2020: Introduction to the Regional Coupled Model WRF4-LICOM: Performance and Model Intercomparison over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 800-816.  doi: 10.1007/s00376-020-9268-6
    [12] SHI Xueli, XIE Zhenghui, LIU Yiming, YANG Hongwei, 2007: Implementation of a Surface Runoff Model with Horton and Dunne Mechanisms into the Regional Climate Model RegCM_NCC, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 750-764.  doi: 10.1007/s00376-007-0750-1
    [13] DAN Li, JI Jinjun, ZHANG Peiqun, 2005: The Soil Moisture of China in a High Resolution Climate-Vegetation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 720-729.  doi: 10.1007/BF02918715
    [14] GAO Wenhua, SUI Chung-Hsiung, 2013: A Modeling Analysis of Rainfall and Water Cycle by the Cloud-resolving WRF Model over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1695-1711.  doi: 10.1007/s00376-013-2288-8
    [15] DAN Li, JI Jinjun, LI Yinpeng, 2007: The Interactive Climate and Vegetation Along the Pole-Equator Belts Simulated by a Global Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 239-249.  doi: 10.1007/s00376-007-0239-y
    [16] Meng YAN, Johnny C. L. CHAN, Kun ZHAO, 2020: Impacts of Urbanization on the Precipitation Characteristics in Guangdong Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 696-706.  doi: 10.1007/s00376-020-9218-3
    [17] Tian FENG, Fumin REN, Da-Lin ZHANG, Guoping LI, Wenyu QIU, Hui YANG, 2020: Sideswiping Tropical Cyclones and Their Associated Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 707-717.  doi: 10.1007/s00376-020-9224-5
    [18] WANG Shaowu, ZHU Jinhong, CAI Jingning, 2004: Interdecadal Variability of Temperature and Precipitation in China since 1880, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 307-313.  doi: 10.1007/BF02915560
    [19] ZHANG Xinping, JIN Huijun, SUN Weizhen, 2006: Stable Isotopic Variations in Precipitation in Southwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 649-658.  doi: 10.1007/s00376-006-0649-2
    [20] GE Quansheng, WANG Shaowu, WEN Xinyu, Caiming SHEN, HAO Zhixin, 2007: Temperature and Precipitation Changes in China During the HoloceneTemperature and Precipitation Changes in China During the Holocene, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1024-1036.  doi: 10.1007/s00376-007-1024-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2013
Manuscript revised: 10 January 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Application of Flux-Form Semi-Lagrangian Transport Scheme in a Spectral Atmosphere Model

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, University of Chinese Academy of Sciences, Beijing 100049;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes. Importantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return