Advanced Search
Article Contents

Estimation of Turbulent Fluxes Using the Flux-Variance Method over an Alpine Meadow Surface in the Eastern Tibetan Plateau


doi: 10.1007/s00376-012-2056-1

  • The flux-variance similarity relation and the vertical transfer of scalars exhibit dissimilarity over different types of surfaces, resulting in different parameterization approaches of relative transport efficiency among scalars to estimate turbulent fluxes using the flux-variance method. We investigated these issues using eddy-covariance measurements over an open, homogeneous and flat grassland in the eastern Tibetan Plateau in summer under intermediate hydrological conditions during rainy season. In unstable conditions, the temperature, water vapor, and CO2 followed the flux-variance similarity relation, but did not show in precisely the same way due to different roles (active or passive) of these scalars. Similarity constants of temperature, water vapor and CO2 were found to be 1.12,1.19 and 1.17, respectively. Heat transportation was more efficient than water vapor and CO2. Based on the estimated sensible heat flux, five parameterization methods of relative transport efficiency of heat to water vapor and CO2 were examined to estimate latent heat and CO2 fluxes. The strategy of local determination of flux-variance similarity relation is recommended for the estimation of latent heat and CO2 fluxes. This approach is better for representing the averaged relative transport efficiency, and technically easier to apply, compared to other more complex ones.
  • [1] GUO Xiaofeng, ZHANG Hongsheng, CAI Xuhui, KANG Ling, LI Wanbiao, DU Jinlin, 2007: Discrepancy and Applicability of Various Similarity Functions in Flux Calculations Under Stable Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 644-654.  doi: 10.1007/s00376-007-0644-2
    [2] ZHONG Zhong, ZHAO Ming, SU Bingkai, TANG Jianping, 2003: On the Determination and Characteristics of Effective Roughness Length for Heterogeneous Terrain, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 71-76.  doi: 10.1007/BF03342051
    [3] LI Weiping, LUO Yong, XIA Kun, LIU Xin, 2008: Simulation of Snow Processes Beneath a Boreal Scots Pine Canopy, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 348-360.  doi: 10.1007/s00376-008-0348-2
    [4] LI Maoshan, MA Yaoming, MA Weiqiang, HU Zeyong, ISHIKAWA Hirohiko, Zhongbo SU, SUN Fanglin, 2006: Analysis of Turbulence Characteristics over the Northern Tibetan Plateau Area, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 579-585.  doi: 10.1007/s00376-006-0579-z
    [5] ZHUO Jinqing, HUANG Jianping, WANG Jiemin, ZHANG Wu, BI Jianrong, WANG Guoyin, LI Weijing, FU Peijian, 2009: Surface Turbulent Flux Measurements over the Loess Plateau for a Semi-Arid Climate Change Study, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 679-691.  doi: 10.1007/s00376-009-8188-2
    [6] GAO Zhiqiu, BIAN Lingen, CHEN Zhigang, Michael SPARROW, ZHANG Jiahua, 2006: Turbulent Variance Characteristics of Temperature and Humidity over a Non-uniform Land Surface for an Agricultural Ecosystem in China, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 365-374.  doi: 10.1007/s00376-006-0365-y
    [7] Jianguo Niu, Hiroaki Kuze, Nobuo Takeuchi, 2000: Studying Air Pollution with Kitt Peak Solar Flux Atlas-Analysis Method and Results of Observation, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 363-374.  doi: 10.1007/s00376-000-0029-2
    [8] Lei LIU, Guihua WANG, Ze ZHANG, Huizan WANG, 2022: Effects of Drag Coefficients on Surface Heat Flux during Typhoon Kalmaegi (2014), ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1501-1518.  doi: 10.1007/s00376-022-1285-1
    [9] Zeng Xinmin, Zhao Ming, Su Bingkai, 2000: A Numerical Study on Effects of Land-Surface Heterogeneity from “Combined Approach” on Atmospheric Process Part I: Principle and Method, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 103-120.  doi: 10.1007/s00376-000-0047-0
    [10] Runhua YANG, Jing GUO, Lars Peter RIISH?JGAARD, 2006: Application of an Error Statistics Estimation Method to the PSAS Forecast Error Covariance Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 33-44.  doi: 10.1007/s00376-006-0004-7
    [11] Chengyan LIU, Zhaomin WANG, Bingrui LI, Chen CHENG, Ruibin XIA, 2017: On the Response of Subduction in the South Pacific to an Intensification of Westerlies and Heat Flux in an Eddy Permitting Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 521-531.  doi: 10.1007/s00376-016-6021-2
    [12] Shenming FU, Jie CAO, Xingwen JIANG, Jianhua SUN, 2017: On the Variation of Divergent Flow: An Eddy-flux Form Equation Based on the Quasi-geostrophic Balance and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 599-612.  doi: 10.1007/s00376-016-6212-x
    [13] ZOU Han, LI Peng, MA Shupo, ZHOU Libo, ZHU Jinhuan, 2012: The Local Atmosphere and the Turbulent Heat Transfer in the Eastern Himalayas, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 435-440.  doi: 10.1007/s00376-011-0233-2
    [14] Feng ZHANG, Yadong LEI, Jia-Ren YAN, Jian-Qi ZHAO, Jiangnan LI, Qiudan DAI, 2017: A New Parameterization of Canopy Radiative Transfer for Land Surface Radiation Models, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 613-622.  doi: 10.1007/s00376-016-6139-2
    [15] LIU Li, WANG Tijian, SUN Zhenhai, WANG Qingeng, ZHUANG Bingliang, HAN Yong, LI Shu, 2012: Eddy Covariance Tilt Corrections over a Coastal Mountain Area in South-east China: Significance for Near-Surface Turbulence Characteristics, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1264-1278.  doi: 10.1007/s00376-012-1052-9
    [16] Jie MING, Jun A. ZHANG, 2016: Effects of Surface Flux Parameterization on the Numerically Simulated Intensity and Structure of Typhoon Morakot (2009), ADVANCES IN ATMOSPHERIC SCIENCES, 33, 58-72.  doi: 10.1007/s00376-015-4202-z
    [17] Li Wei, Yu Rucong, Liu Hailong, Yu Yongqiang, 2001: Impacts of Diurnal Cycle of SST on the Intraseasonal Variation of Surface Heat Flux over the Western PacificWarm Pool, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 793-806.
    [18] Fuqiang YANG, Li DAN, Jing PENG, Xiujing YANG, Yueyue LI, Dongdong GAO, 2019: Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 79-92.  doi: 10.1007/s00376-018-8035-4
    [19] TANG Yanbing, 2004: Connections between Surface Sensible Heat Net Flux and Regional Summer Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 897-908.  doi: 10.1007/BF02915592
    [20] ZHOU Lian-Tong, HUANG Ronghui, 2010: An Assessment of the Quality of Surface Sensible Heat Flux Derived from Reanalysis Data through Comparison with Station Observations in Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 500-512.  doi: 10.1007/s00376-009-9081-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2013
Manuscript revised: 10 March 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Estimation of Turbulent Fluxes Using the Flux-Variance Method over an Alpine Meadow Surface in the Eastern Tibetan Plateau

  • 1. Key Laboratory of Land Surface and Climate Change in Cold and Arid Regions, Cold and Arid Regions, Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000;Key Laboratory of Land Surface and Climate Change in Cold and Arid Regions, Cold and Arid Regions, Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000;Key Laboratory of Land Surface and Climate Change in Cold and Arid Regions, Cold and Arid Regions, Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000;Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, WA;Key Laboratory of Land Surface and Climate Change in Cold and Arid Regions, Cold and Arid Regions, Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000

Abstract: The flux-variance similarity relation and the vertical transfer of scalars exhibit dissimilarity over different types of surfaces, resulting in different parameterization approaches of relative transport efficiency among scalars to estimate turbulent fluxes using the flux-variance method. We investigated these issues using eddy-covariance measurements over an open, homogeneous and flat grassland in the eastern Tibetan Plateau in summer under intermediate hydrological conditions during rainy season. In unstable conditions, the temperature, water vapor, and CO2 followed the flux-variance similarity relation, but did not show in precisely the same way due to different roles (active or passive) of these scalars. Similarity constants of temperature, water vapor and CO2 were found to be 1.12,1.19 and 1.17, respectively. Heat transportation was more efficient than water vapor and CO2. Based on the estimated sensible heat flux, five parameterization methods of relative transport efficiency of heat to water vapor and CO2 were examined to estimate latent heat and CO2 fluxes. The strategy of local determination of flux-variance similarity relation is recommended for the estimation of latent heat and CO2 fluxes. This approach is better for representing the averaged relative transport efficiency, and technically easier to apply, compared to other more complex ones.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return