Advanced Search
Article Contents

Two-moment Bulk Stratiform Cloud Microphysics in the Grid-point Atmospheric Model of IAP LASG (GAMIL)


doi: 10.1007/s00376-012-2072-1

  • A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable representation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. Furthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.
  • [1] Lei WANG, Qing BAO, Wei-Chyung WANG, Yimin LIU, Guo-Xiong WU, Linjiong ZHOU, Jiandong LI, Hua GONG, Guokui NIAN, Jinxiao LI, Xiaocong WANG, Bian HE, 2019: LASG Global AGCM with a Two-moment Cloud Microphysics Scheme: Energy Balance and Cloud Radiative Forcing Characteristics, ADVANCES IN ATMOSPHERIC SCIENCES, , 697-710.  doi: 10.1007/s00376-019-8196-9
    [2] GAO Wenhua, ZHAO Fengsheng, HU Zhijin, FENG Xuan, 2011: A Two-Moment Bulk Microphysics Coupled with a Mesoscale Model WRF: Model Description and First Results, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1184-1200.  doi: 10.1007/s00376-010-0087-z
    [3] Xiaofei LI, Qinghong ZHANG, Huiwen XUE, 2017: The Role of Initial Cloud Condensation Nuclei Concentration in Hail Using the WRF NSSL 2-moment Microphysics Scheme, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1106-1120.  doi: 10.1007/s00376-017-6237-9
    [4] Jinfang YIN, Donghai WANG, Guoqing ZHAI, Hong WANG, Huanbin XU, Chongjian LIU, 2022: A Modified Double-Moment Bulk Microphysics Scheme Geared toward the East Asian Monsoon Region, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1451-1471.  doi: 10.1007/s00376-022-1402-1
    [5] Tuanjie HOU, Hengchi LEI, Zhaoxia HU, Jiefan YANG, Xingyu LI, 2020: Simulations of Microphysics and Precipitation in a Stratiform Cloud Case over Northern China: Comparison of Two Microphysics Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 117-129.  doi: 10.1007/s00376-019-8257-0
    [6] Marcus JOHNSON, Ming XUE, Youngsun JUNG, 2024: Comparison of a Spectral Bin and Two Multi-Moment Bulk Microphysics Schemes for Supercell Simulation: Investigation into Key Processes Responsible for Hydrometeor Distributions and Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 784-800.  doi: 10.1007/s00376-023-3069-7
    [7] Yaodeng CHEN, Ruizhi ZHANG, Deming MENG, Jinzhong MIN, Lina ZHANG, 2016: Variational Assimilation of Satellite Cloud Water/Ice Path and Microphysics Scheme Sensitivity to the Assimilation of a Rainfall Case, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1158-1170.  doi: 10.1007/s00376-016-6004-3
    [8] Zhang Renjian, Wang Mingxing, Zeng Qingcun, 2000: Global Two-Dimensional Chemistry Model and Simulation of Atmospheric Chemical Composition, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 72-82.  doi: 10.1007/s00376-000-0044-3
    [9] Wanchen WU, Wei HUANG, Baode CHEN, 2022: A Comparison of Two Bulk Microphysics Parameterizations for the Study of Aerosol Impacts on an Idealized Supercell, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 97-116.  doi: 10.1007/s00376-021-1187-7
    [10] Yangang LIU, Man-Kong YAU, Shin-ichiro SHIMA, Chunsong LU, Sisi CHEN, 2023: Parameterization and Explicit Modeling of Cloud Microphysics: Approaches, Challenges, and Future Directions, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 747-790.  doi: 10.1007/s00376-022-2077-3
    [11] Tuanjie HOU, Baojun CHEN, Hengchi LEI, Lei WEI, Youjiang HE, Qiujuan FENG, 2023: Evaluation of the Predicted Particle Properties (P3) Microphysics Scheme in Simulations of Stratiform Clouds with Embedded Convection, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1859-1876.  doi: 10.1007/s00376-023-2178-7
    [12] Yu Rucong, 1994: A Two-Step Shape-Preserving Advection Scheme, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 479-490.  doi: 10.1007/BF02658169
    [13] Qingchang QIN, Xueshun SHEN, Chungang CHEN, Feng XIAO, Yongjiu DAI, Xingliang LI, 2019: A 3D Nonhydrostatic Compressible Atmospheric Dynamic Core by Multi-moment Constrained Finite Volume Method, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1129-1142.  doi: 10.1007/s00376-019-9002-4
    [14] Pei HUANG, Chungang CHEN, Xingliang LI, Xueshun SHEN, Feng XIAO, 2022: An Adaptive Nonhydrostatic Atmospheric Dynamical Core Using a Multi-Moment Constrained Finite Volume Method, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 487-501.  doi: 10.1007/s00376-021-1185-9
    [15] Fan Beifen, Ye Jiadong, William R. Cotton, Gregory J. Tripoli, 1990: Numerical Simulation of Microphysics in Meso-β-Scale Convective Cloud System Associated with a Mesoscale Convective Complex, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 154-170.  doi: 10.1007/BF02919153
    [16] Jie TANG, Chungang CHEN, Xueshun SHEN, Feng XIAO, Xingliang LI, 2021: A Positivity-preserving Conservative Semi-Lagrangian Multi-moment Global Transport Model on the Cubed Sphere, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1460-1473.  doi: 10.1007/s00376-021-0393-7
    [17] Xi WANG, Zheng GUO, Yipeng HUANG, Hongjie FAN, Wanbiao LI, 2017: A Cloud Detection Scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT), ADVANCES IN ATMOSPHERIC SCIENCES, 34, 16-25.  doi: 10.1007/s00376-016-6033-y
    [18] LI Lijuan, Yuqing WANG, WANG Bin, ZHOU Tianjun, 2008: Sensitivity of the Grid-point Atmospheric Model of IAP LASG (GAMIL1.1.0) Climate Simulations to Cloud Droplet Effective Radius and Liquid Water Path, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 529-540.  doi: 10.1007/s00376-008-0529-z
    [19] Qiu Jinhuan, 1995: Two-wavelength Lidar Measurement of Cloud-aerosol Optical Properties, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 177-186.  doi: 10.1007/BF02656830
    [20] Zhang Daomin, Sheng Hua, Ji Liren, 1990: Development and Test of Hydrostatic Extraction Scheme in Spectral Model, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 142-153.  doi: 10.1007/BF02919152

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 17 April 2012
Manuscript revised: 20 September 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Two-moment Bulk Stratiform Cloud Microphysics in the Grid-point Atmospheric Model of IAP LASG (GAMIL)

    Corresponding author: SHI Xiangjun; 
  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
  • 2.  Hebei Key Laboratory for Meteorology and Eco-environment, Shijiazhuang 050021
  • 3.  Hebei Climate Center, Shijiazhuang 050021
  • 4.  Pacific Northwest National Laboratory, Richland, Washington, USA

Abstract: A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable representation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. Furthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return