Advanced Search
Article Contents

Variability and Risk Analysis of Hong Kong Air Quality Based on Monsoon and El Nino Conditions


doi: 10.1007/s00376-012-2074-z

  • This study presents an exploratory analysis aimed at improving understanding of the variability of Hong Kong air quality associated with different climate conditions. Significantly negative correlations were found when Nino 3 led particulate matter ≤10 μm PM10) and NO2 by 2-3 months over the Hong Kong territory, while the other pollutants (e.g., O3, SO2) showed modest correlations. A significant decreasing trend in visibility was observed during the autumn and winter, which has potential implications for the air-quality degradation and the endangerment of human health in Hong Kong. In an El Nino summer, the visibility was relatively better, while visibility in other seasons was diminished. On the other hand, in La Nina events, significant changes occurred in visibility in winter and autumn. Air pollution indices were less sensitive to the South China Summer Monsoon (SCSM), but a relatively high correlation existed between the East Asian Winter Monsoon (EAWM) and air pollutants. Rainfall was lower during most of the strong EAWM years compared to the weak years. This result suggests that the pollutants that accumulate in Hong Kong are not easy to wash out, so concentrations remain at a higher level. Finally, based on the conditional Air Pollution Index (API) risk assessment, site-specific vulnerabilities were analyzed to facilitate the development of the air-quality warning systems in Hong Kong.
  • [1] Wen ZHOU, Richard C. Y. LI, Eric C. H. CHOW, 2017: Intraseasonal Variation of Visibility in Hong Kong, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 26-38.  doi: 10.1007/s00376-016-6056-4
    [2] Eric C. H. CHOW, Richard C. Y. LI, Wen ZHOU, 2018: Influence of Tropical Cyclones on Hong Kong Air Quality, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1177-1188.  doi: 10.1007/s00376-018-7225-4
    [3] T. C. LEE, H. S. CHAN, E. W. L. GINN, M. C. WONG, 2011: Long-Term Trends in Extreme Temperatures in Hong Kong and Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 147-157.  doi: 10.1007/s00376-010-9160-x
    [4] HE Jinhai, JU Jianhua, WEN Zhiping, L\"U Junmei, JIN Qihua, 2007: A Review of Recent Advances in Research on Asian Monsoon in China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 972-992.  doi: 10.1007/s00376-007-0972-2
    [5] Lu Riyu, Chan-Su Ryu, Buwen Dong, 2002: Associations between the Western North Pacific Monsoon and the South China Sea Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 12-24.  doi: 10.1007/s00376-002-0030-z
    [6] DING Yihui, LIU Yanju, SONG Yafang, ZHANG Jin, 2015: From MONEX to the Global Monsoon: A Review of Monsoon System Research, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 10-31.  doi: 10.1007/s00376-014-0008-7
    [7] Xue Feng, Bi Xunqiang, Lin Yihua, 2001: Modelling the Global Monsoon System by IAP 9L AGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 404-412.  doi: 10.1007/BF02919319
    [8] D.M. CHATE, RT. . WAGHMARE, C.K. JENA, V. GOPALAKRISHNAN, P. MURUGAVEL, Sachin D. GHUDE, Rachana KULKARNI, P.C. S. DEVARA, 2018: Cloud Condensation Nuclei over the Bay of Bengal during the Indian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 218-223.  doi: 10.1007/s00376-017-6331-z
    [9] Xu Jianjun, Wu Guoxiong, 1999: Dynamic Features and Maintenance Mechanism of Asian Summer Monsoon Subsystem, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 523-536.  doi: 10.1007/s00376-999-0028-x
    [10] Lanqiang BAI, Dan YAO, Zhiyong MENG, Yu ZHANG, Xianxiang HUANG, Zhaoming LI, 2024: Influence of Irregular Coastlines on a Tornadic Mesovortex in the Pearl River Delta during Monsoon Season. Part II: Numerical Experiments, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3096-4
    [11] Qian Weihong, Zhu Yafen, Xie An, Ye Qian, 1998: Seasonal and Interannual Variations of Upper Tropospheric Water Vapor Band Brightness Temperature over the Global Monsoon Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 337-345.  doi: 10.1007/s00376-998-0005-9
    [12] Ruth GEEN, Marianne PIETSCHNIG, Shubhi AGRAWAL, Dipanjan DEY, F. Hugo LAMBERT, Geoffrey K. VALLIS, 2023: The Relationship between Model Biases in East Asian Summer Monsoon Rainfall and Land Evaporation, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2029-2042.  doi: 10.1007/s00376-023-2297-1
    [13] CHEN Guanghua, HUANG Ronghui, 2008: Influence of Monsoon over the Warm Pool on Interannual Variation on Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 319-328.  doi: 10.1007/s00376-008-0319-7
    [14] Xiao HAN, Meigen ZHANG, 2021: The Interannual Variation of Transboundary Contributions from Chinese Emissions of PM2.5 to South Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 701-706.  doi: 10.1007/s00376-021-1003-4
    [15] Lanqiang BAI, Dan YAO, Zhiyong MENG, Yu ZHANG, Xianxiang HUANG, Zhaoming LI, Xiaoding YU, 2024: Influence of Irregular Coastlines on a Tornadic Mesovortex in the Pearl River Delta during the Monsoon Season. Part I: Pre-storm Environment and Storm Evolution, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3095-5
    [16] P. L. S. Rao, 2000: The Influence of Systematic Errors on the Asian Summer Monsoon Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 576-586.  doi: 10.1007/s00376-000-0021-x
    [17] Lonnie Hudgins, Jianping Huang, 1996: Bivariate Wavelet Analysis of Asia Monsoon and ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 299-312.  doi: 10.1007/BF02656848
    [18] Huang Ronghui, Zhang Renhe, Zhang Qingyun, 2000: The 1997/ 98 ENSO Cycle and Its Impact on Summer Climate Anomalies in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 348-362.  doi: 10.1007/s00376-000-0028-3
    [19] Jiang Shangcheng, Ye Qian, Yang Xifeng, An Gang, Xiangqiang Wu, 2000: Climatological Features of the Global Tropical Subsidence Region Based on Satellite Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 391-402.  doi: 10.1007/s00376-000-0031-8
    [20] Liu Qinyu, Jia Yinglai, Wang Xiaohua, Yang Haijun, 2001: On the Annual Cycle Characteristics of the Sea Surface Height in South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 613-622.  doi: 10.1007/s00376-001-0049-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2013
Manuscript revised: 10 March 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Variability and Risk Analysis of Hong Kong Air Quality Based on Monsoon and El Nino Conditions

  • 1. School of Energy and Environment, City University of Hong Kong, Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, City University of Hong Kong, Hong Kong;School of Energy and Environment, City University of Hong Kong, Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, City University of Hong Kong, Hong Kong;School of Energy and Environment, City University of Hong Kong, Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, City University of Hong Kong, Hong Kong;School of Energy and Environment, City University of Hong Kong, Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, City University of Hong Kong, Hong Kong

Abstract: This study presents an exploratory analysis aimed at improving understanding of the variability of Hong Kong air quality associated with different climate conditions. Significantly negative correlations were found when Nino 3 led particulate matter ≤10 μm PM10) and NO2 by 2-3 months over the Hong Kong territory, while the other pollutants (e.g., O3, SO2) showed modest correlations. A significant decreasing trend in visibility was observed during the autumn and winter, which has potential implications for the air-quality degradation and the endangerment of human health in Hong Kong. In an El Nino summer, the visibility was relatively better, while visibility in other seasons was diminished. On the other hand, in La Nina events, significant changes occurred in visibility in winter and autumn. Air pollution indices were less sensitive to the South China Summer Monsoon (SCSM), but a relatively high correlation existed between the East Asian Winter Monsoon (EAWM) and air pollutants. Rainfall was lower during most of the strong EAWM years compared to the weak years. This result suggests that the pollutants that accumulate in Hong Kong are not easy to wash out, so concentrations remain at a higher level. Finally, based on the conditional Air Pollution Index (API) risk assessment, site-specific vulnerabilities were analyzed to facilitate the development of the air-quality warning systems in Hong Kong.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return