Advanced Search
Article Contents

Water Vapor Transport and Cross-Equatorial Flow over the Asian-Australia Monsoon Region Simulated by CMIP5 Climate Models


doi: 10.1007/s00376-012-2148-y

  • The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian-Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) were evaluated. Based on climatology of the twentieth-century simulations, most of models have a reasonably realistic representation of summer monsoon WVT characterized by southeast water vapor conveyor belt over the South Indian Ocean and southwest belt from the Arabian Sea to the East Asian. The correlation coefficients between NCEP reanalysis and simulations of BCC-CSM1-1, BNU-ESM, CanESM2, FGOALS-s2, MIROC4h and MPI-ESM-LR are up to 0.8. The simulated CEF depicted by the meridional wind along the equator includes the Somali jet and eastern CEF in low atmosphere and the reverse circulation in upper atmosphere, which were generally consistent with NCEP reanalysis. Multi-model ensemble means (MME) can reproduce more reasonable climatological features in spatial distribution both of WVT and CEF. Ten models with more reasonable WVT simulations were selected for future projection studies, including BCC-CSM1-1, BNU-ESM, CanESM2, CCSM4, FGOALS-s2, FIO-ESM, GFDL-ESM2G, MRIOC5, MPI-ESM-LR and NorESM-1M. Analysis based on the future projection experiments in RCP (Representative Concentration Pathway) 2.6, RCP4.5, RCP6 and RCP8.5 show that the global warming forced by different RCP scenarios will results in enhanced WVT over the Indian area and the west Pacific and weaken WVT in the low latitudes of tropical Indian Ocean.
  • [1] Xiao-Tong ZHENG, Lihui GAO, Gen LI, Yan DU, 2016: The Southwest Indian Ocean Thermocline Dome in CMIP5 Models: Historical Simulation and Future Projection, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 489-503.  doi: 10.1007/s00376-015-5076-9
    [2] Fukai LIU, Yiyong LUO, Jian LU, Xiuquan WAN, 2021: The Role of Ocean Dynamics in the Cross-equatorial Energy Transport under a Thermal Forcing in the Southern Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1737-1749.  doi: 10.1007/s00376-021-1099-6
    [3] XU Yamei, 2011: The Genesis of Tropical Cyclone Bilis (2000) Associated with Cross-equatorial Surges, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 665-681.  doi: 10.1007/s00376-010-9142-z
    [4] LIU Yonghe, FENG Jinming, MA Zhuguo, 2014: An Analysis of Historical and Future Temperature Fluctuations over China Based on CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 457-467.  doi: 10.1007/s00376-013-3093-0
    [5] YAN Qing*, WANG Huijun, Ola M. JOHANNESSEN, and ZHANG Zhongshi, 2014: Greenland Ice Sheet Contribution to Future Global Sea Level Rise based on CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 8-16.  doi: 10.1007/s00376-013-3002-6
    [6] WANG Lin, CHEN Wen, ZHOU Wen, 2014: Assessment of Future Drought in Southwest China Based on CMIP5 Multimodel Projections, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1035-1050.  doi: 10.1007/s00376-014-3223-3
    [7] YANG Shili, FENG Jinming, DONG Wenjie, CHOU Jieming, 2014: Analyses of Extreme Climate Events over China Based on CMIP5 Historical and Future Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1209-1220.  doi: 10.1007/s00376-014-3119-2
    [8] TIAN Di, GUO Yan*, DONG Wenjie, 2015: Future Changes and Uncertainties in Temperature and Precipitation over China Based on CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 487-496.  doi: 10.1007/s00376-014-4102-7
    [9] Jun YING, Ping HUANG, Ronghui HUANG, 2016: Evaluating the Formation Mechanisms of the Equatorial Pacific SST Warming Pattern in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 433-441.  doi: 10.1007/s00376-015-5184-6
    [10] ZHU Yali, 2012: Variations of the Summer Somali and Australia Cross-Equatorial Flows and the Implications for the Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 509-518.  doi: 10.1007/s00376-011-1120-6
    [11] Xiaoxuan ZHAO, Riyu LU, 2020: Vertical Structure of Interannual Variability in Cross-Equatorial Flows over the Maritime Continent and Indian Ocean in Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 173-186.  doi: 10.1007/s00376-019-9103-0
    [12] WANG Chao, WU Liguang, 2015: Influence of Future Tropical Cyclone Track Changes on Their Basin-Wide Intensity over the Western North Pacific: Downscaled CMIP5 Projections, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 613-623.  doi: 10.1007/s00376-014-4105-4
    [13] Peihua QIN, Zhenghui XIE, Jing ZOU, Shuang LIU, Si CHEN, 2021: Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 460-479.  doi: 10.1007/s00376-020-0141-4
    [14] XU Xiangde, MIAO Qiuju, WANG Jizhi, ZHANG Xuejin, 2003: The Water Vapor Transport Model at the Regional Boundary during the Meiyu Period, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 333-342.  doi: 10.1007/BF02690791
    [15] Yi Lan, 1995: Characteristics of the Mean Water Vapor Transport over Monsoon Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 195-206.  doi: 10.1007/BF02656832
    [16] SUN Li, SHEN Baizhu, SUI Bo, 2010: A Study on Water Vapor Transport and Budget of Heavy Rain in Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1399-1414.  doi: 10.1007/s00376-010-9087-2
    [17] SUN Bo, ZHU Yali, WANG Huijun, 2011: The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1039-1048.  doi: 10.1007/s00376-010-0093-1
    [18] Li Ma, Zhigang Wei, Xianru Li, Shuting Wu, 2024: Future changes in various cold surges over China in CMIP6 projection, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3220-5
    [19] HU Yongyun, TAO Lijun, and LIU Jiping, 2013: Poleward Expansion of the Hadley Circulation in CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 790-795.  doi: 10.1007/s00376-012-2187-4
    [20] WU Renguang, CHEN Jiepeng, and WEN Zhiping, 2013: PrecipitationSurface Temperature Relationship in the IPCC CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 766-778.  doi: 10.1007/s00376-012-2130-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 12 July 2012
Manuscript revised: 17 September 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Water Vapor Transport and Cross-Equatorial Flow over the Asian-Australia Monsoon Region Simulated by CMIP5 Climate Models

    Corresponding author: SONG Yajuan; 
  • 1. College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266100
  • 2. First Institute of Oceanography, State Oceanic Administration, Qingdao 266061

Abstract: The summer mean water vapor transport (WVT) and cross-equatorial flow (CEF) over the Asian-Australian monsoon region simulated by 22 coupled atmospheric-oceanic general circulation models (AOGCMs) from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) were evaluated. Based on climatology of the twentieth-century simulations, most of models have a reasonably realistic representation of summer monsoon WVT characterized by southeast water vapor conveyor belt over the South Indian Ocean and southwest belt from the Arabian Sea to the East Asian. The correlation coefficients between NCEP reanalysis and simulations of BCC-CSM1-1, BNU-ESM, CanESM2, FGOALS-s2, MIROC4h and MPI-ESM-LR are up to 0.8. The simulated CEF depicted by the meridional wind along the equator includes the Somali jet and eastern CEF in low atmosphere and the reverse circulation in upper atmosphere, which were generally consistent with NCEP reanalysis. Multi-model ensemble means (MME) can reproduce more reasonable climatological features in spatial distribution both of WVT and CEF. Ten models with more reasonable WVT simulations were selected for future projection studies, including BCC-CSM1-1, BNU-ESM, CanESM2, CCSM4, FGOALS-s2, FIO-ESM, GFDL-ESM2G, MRIOC5, MPI-ESM-LR and NorESM-1M. Analysis based on the future projection experiments in RCP (Representative Concentration Pathway) 2.6, RCP4.5, RCP6 and RCP8.5 show that the global warming forced by different RCP scenarios will results in enhanced WVT over the Indian area and the west Pacific and weaken WVT in the low latitudes of tropical Indian Ocean.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return