Advanced Search
Article Contents

Case Studies of Sprite-producing and Non-sprite-producing Summer Thunderstorms

Fund Project:

doi: 10.1007/s00376-013-2120-5

  • Three summer thunderstorms in the eastern region of China were analyzed in detail using multiple data, including Doppler radar, lightning location network, TRMM (Tropical Rainfall Measuring Mission), MTSAT (Multi-Function Transport Satellite) images, NCEP (National Centers for Environmental Prediction) Reanalysis, and radiosonde. Two of the three storms were sprite-producing and the other was non-sprite-producing. The two sprite-producing storms occurred on 12 August and 2728 July 2007, producing 16 and one sprite, respectively. The non-sprite-producing storm occurred on 2930 July 2007. The major objective of the study was to try to find possible differences between sprite-producing and non-sprite producing storms using the multiple datasets. The results showed that the convection in the 12 August storm was the strongest compared with the other storms, and it produced the largest number of sprites. Precipitation ice, cloud ice and cloud water content in the convective regions in the 12 August storm were larger than in the other two storms, but the opposite was true in the weak convective regions. The storm microphysical properties along lines through parent CG (cloud-to-ground lightning) locations showed no special characteristics related to sprites. The flash rate evolution in the 12 August storm provided additional confirmation that major sprite activity coincides with a rapid decrease in the negative CG flash rate. However, the evolution curve of the CG flash rate was erratic in the sprite-producing storm on 2728 July, which was significantly different from that in the 12 August storm. The average positive CG peak current in sprite-producing storms was larger than that in the non-sprite-producing one.
  • 1. Barrington-Leigh, C. P., U. S. Inan, M. Stanley, and S. A. Cummer, 1999: Sprites triggered by negative lightning discharges. Geophy. Res. Lett., 26 (24), 3605-3608.
    2. Barrington-Leigh, C. P., U. S. Inan, and M. Stanley, 2001: Identification of sprites and elves with intensified video and broadband array photometry. J. Geophys. Res., 106 (A2), 1741-1750.
    3. Bell, T. F.,S. C. Reising, and U. S. Inan, 1998:Intense continuing currents following positive cloud-to-ground lightning associated with sprites. Geophys. Res. Lett., 25(8), 1285-1288.
    4. Boccippio, D. J., E. R. Williams, S. J. Heckman, W. A. Lyons, I. T. Baker, and R. Boldi, 1995: Sprites, ELF transients, and positive ground strokes. Science, 269 (5227), 1088-1091.
    5. Chen, A. B., and Coauthors, 2008: Global distributions and occurrence rates of transient luminous events. J. Geophys. Res., 113(A08306), doi: 10.1029/2008JA013101.
    6. Cummer, S. A., 2003: Current moment in sprite-producing lightning.Journal of Atmospheric and Solar-Terrestrial Physics, 65, 499-508.
    7. Cummins, K. L.,M. J. Murphy, E. A. Bardo, W. L. Hiscox, and R. B. Pyle, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103(D8), 9035-9044.
    8. Feng, G. L.,X. S. Qie,T. Yuan, and S. Z. Niu, 2007: Lightning activity and precipitation structure of hailstorms. Sci. China (D), 50(4), 629-639.
    9. Franz, R. C., R. J. Nemzek, and J. R. Winckler, 1990: Television image of a large upward electrical discharge above a thunderstorm system. Science, 249(4964), 48-51.
    10. Ganot, M., Y. Yair, C. Price, B. Ziv, Y. Sherez, E. Greenberg, A. Devir, and R. Yaniv, 2007: First detection of transient luminous events associated with winter thunderstorms in the eastern Mediterranean. Geophy. Res. Lett., 34 (L12801), doi: 10.1029/2007GL029258.
    11. Gauthier M. L., W. A. Petersen, L. D. Carey, and H. J. Christian Jr., 2006: Relationship between cloud-to-ground lightning and precipitation ice mass: A radar study over Houston. Geophys. Res. Lett., 33, L20803, doi: 10.1029/2006GL 027244.
    12. Greenberg, E.,C. Price, Y. Yair, M. Ganot, J. Bor, and G. Satori, 2007:ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 1569-1586.
    13. Hardman, S.,R. L. Dowden, J. B. Brundell, J. L. Bahr,Z. Kawasaki, and C. J. Rodger, 2000: Sprite observations in the northern territory of Austrarlia. J. Geophys. Res., 105 (D4), 4689-4697.
    14. Hayakawa, M., T. Nakamura,Y. Hobara, and E. Williams, 2004: Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. J. Geophys. Res., 109 (A01312), doi: 10.1029/2003JA009905.
    15. Kummerow, C.,W. Barnes,T. Kozu, J. Shiue, and J. Simpson, 1998:The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic. Technol., 15(3), 809-817.
    16. Lang, T. J., W. A. Lyons,S. A. Rutledge, J. D. Meyer, D. R. MacGorman, and S. A. Cummer, 2010: Transient luminous events above two mesoscale convective systems: Storm structure and evolution. J. Geophys. Res., 115(A00E22), doi: 10.1029/2009JA014500.
    17. Liu, D. X.,X. S. Qie, Y. J. Xiong, and G. L. Feng, 2011: Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing. Adv. Atmos. Sci., 28(4), 866-878, doi: 10.1007/s00376-010-0001-8.
    18. Lyons, W. A., 1996: Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems. J. Geophys. Res., 101(D23), 29641-29652.
    19. Lyons, W. A., E. R. Williams,S. A. Cummer, and M. A. Stanley, 2003: Characteristics of sprite-producing positive cloud-to-ground lightning during the19 July 2000 STEPS mesoscale convective systems. Mon.Wea. Rev., 131, 2417-2427.
    20. Marshall, R. A., U. S. Inan, and W. A. Lyons, 2007: Very low frequency sferic bursts, sprites, and their association with lightning activity. J. Geophys. Res., 112(D22105), doi: 10.1029/2007JD008857.
    21. Neubert, T.,T. H. Allin, H. Stenbaek-Nielsen, and E. Blanc, 2001: Sprites over Europe. Geophys. Res. Lett., 28 (18), 3585-3588.
    22. Pinto, O. Jr., and Coauthours, 2004: Thunderstorm and lightning characteristics associated with sprites in Brazil. Geophys. Res. Lett., 31(L13103), doi: 10.1029/2004GL020264.
    23. Qie, X. S.,R. B. Jiang, C. X. Wang, J. Yang,J. F. Wang, and D. X. Liu, 2011: Simultaneously measured current, luminosity, and electric field pulses in a rocket-triggered lightning flash. J. Geophys. Res., 116(D10102), doi: 10.1029/2010JD015331.
    24. Sao Sabbas, F. T., D. D. Sentman, E. M. Wescott, O. Pinto, O. Mendes, and M. J. Taylor, 2003:Statistical analysis of space-time relationships between sprites and lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 65, 525-535.
    25. Sao Sabbas, F. T., and Coauthors, 2010: Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 Campaign in Brazil. J. Geophys. Res., 115 (A00E58), doi: 10.1029/2009JA014857.
    26. Soula, S., O. A. van der Velde, J. Montanya,T. Neubert, O. Chanrion, and M. Ganot, 2009: Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies. Atmospheric Research, 91, 514-528.
    27. Soula, S., and Coauthors, 2010:Characteristics and conditions of production of transient luminous events observed over a maritime storm. J. Geophys. Res., 115 (D16118), doi: 10.1029/2009JD012066.
    28. Su, H. T., R. R. Hsu, A. B. Chen, Y. J. Lee, and L. C. Lee, 2002: Observation of sprites over the Asian continent and over oceans around Taiwan. Geophy. Res. Lett., 29 (4), doi: 10.1029/2001GL013737.
    29. Suzuki, T.,M. Hayakawa,Y. Matsudo, and K. Michimoto, 2006: How do winter thundercloud systems generate sprite-inducing lightning in the Hokuriku area of Japan? Geophys. Res. Lett., 33(L10806), doi: 10.1029/2005GL025433.
    30. van der Velde, O. A.,J. Montanyà, S. Soula, N. Pineda, and J. Bech, 2010: Spatial and temporal evolution of horizontally extensive lightning discharges associated with sprite-producing positive cloud-to-ground flashes in northeastern Spain. J. Geophys. Res., 115(A00E56), doi: 10.1029/2009JA014773.
    31. Wescott, E. M.,H. C. Stenbaek-Nielsen, D. D. Sentman, M. J. Heavner, D. R. Moudry, and F. T. Sao Sabbas, 2001: Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors. J. Geophys. Res., 106 (A6), 10467-10477.
    32. Williams, E., E. Downes, R. Boldi,W. Lyons, and S. Heckman, 2007: Polarity asymmetry of sprite-producing lightning: A paradox? Radio. Sci., 42 (RS2S17), doi: 10.1029/2006RS003488.
    33. Winckler, J. R., 1995: Further observations of cloud-ionosphere electrical discharges above thunderstorms. J. Geophys. Res., 100(D7), 14335-14345.
    34. Winckler, J, R., 1998: Optical and VLF radio observations of sprites over a frontal storm viewed from O'Brien Observatory of the University of Minnesota. Journal of Atmospheric and Solar-Terrestrial Physics, 60(7-9), 679-688.
    35. Winckler, J. R., W. A. Lyons, T. E. Nelson, and R. J. Nemzek, 1996: New high-resolution ground-based studies of sprites. J. Geophys. Res., 101(D3), 6997-7004.
    36. Yair, Y., and Coauthors, 2004: New observations of sprites from the space shuttle. J. Geophys. Res., 109(D15201), doi: 10.1029/2003JD004497.
    37. Yair, Y., and Coauthors, 2009: Optical observations of transient luminous events associated with winter thunderstorms near the coast of Israel. Atmospheric Research, 91(2-4), 529-537.
    38. Yang, J.,X. S. Qie, G. S. Zhang,Y. Zhao, and T. Zhang, 2008: Red sprites over thunderstorms in the coast of Shandong province, China. Chinese Science Bulletin, 53(7), 1079-1086.
    39. Yang, J., X. S. Qie, and G. L. Feng, 2013: Characteristics of one sprite-producing summer thunderstorm. Atmospheric Research, 127, 90-115, doi: 10.1016/j.atmosres.2011.08.001.
    40. Zhang, Y. J.,Q. Meng, and W. T. Lü, 2006: Charge structures and cloud-to-ground lightning discharges characteristics in two supercell thunderstorms. Chinese Science Bulletin, 51, 198-212.
    41. Zhao, Z. K., X. S. Qie, and T. L. Zhang, 2010:Electric field soundings and the charge structure within an isolated thunderstorm. Chinese Science Bulletin, 55, 872-876.
  • [1] Jing YANG, Gaopeng LU, Ningyu LIU, Haihua CUI, Yu WANG, Morris COHEN, 2017: Analysis of a Mesoscale Convective System that Produced a Single Sprite, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 258-271.  doi: 10.1007/s00376-016-6092-0
    [2] LIU Dongxia, QIE Xiushu, PENG Liang, LI Wanli, 2014: Charge Structure of a Summer Thunderstorm in North China: Simulation Using a Regional Atmospheric Model System, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1022-1034.  doi: 10.1007/s00376-014-3078-7
    [3] Xiushu QIE, Yijun ZHANG, 2019: A Review of Atmospheric Electricity Research in China from 2011 to 2018, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 994-1014.  doi: 10.1007/s00376-019-8195-x
    [4] Weitao LYU, Dong ZHENG, Yang ZHANG, Wen YAO, Rubin JIANG, Shanfeng YUAN, Dongxia LIU, Fanchao LYU, Baoyou ZHU, Gaopeng LU, Qilin ZHANG, Yongbo TAN, Xuejuan WANG, Yakun LIU, Shaodong CHEN, Lyuwen CHEN, Qingyong LI, Yijun ZHANG, 2023: A Review of Atmospheric Electricity Research in China from 2019 to 2022, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1457-1484.  doi: 10.1007/s00376-023-2280-x
    [5] PAN Lunxiang, QIE Xiushu, WANG Dongfang, , 2014: Lightning Activity and Its Relation to the Intensity of Typhoons over the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 581-592.  doi: 10.1007/s00376-013-3115-y
    [6] LI Gang, HE Guangxin, Xiaolei ZOU*, and Peter Sawin RAY, 2014: A Velocity Dealiasing Scheme for C-band Weather Radar Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 17-26.  doi: 10.1007/s00376-013-2251-8
    [7] Hongke CAI, Yaqin MAO, Xuanhao ZHU, Yunfei FU, Renjun ZHOU, 2024: Comparison of the Minimum Bounding Rectangle and Minimum Circumscribed Ellipse of Rain Cells from TRMM, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 391-406.  doi: 10.1007/s00376-023-2281-9
    [8] Shuang LUO, Yunfei FU, Shengnan ZHOU, Xiaofeng WANG, Dongyong WANG, 2020: Analysis of the Relationship between the Cloud Water Path and Precipitation Intensity of Mature Typhoons in the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 359-376.  doi: 10.1007/s00376-020-9204-9
    [9] D.B. Jadhav, A.L. Londhe, S. Bose, 1996: Observations of NO2 and O3 during Thunderstorm Activity Using Visible Spectroscopy, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 359-374.  doi: 10.1007/BF02656853
    [10] PENG Xindong, ZHANG Renhe, WANG Hongyan, 2013: Kinematic Features of a Bow Echo in Southern China Observed with Doppler Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1535-1548.  doi: 10.1007/s00376-012-2108-6
    [11] YOU Wei, ZANG Zengliang, PAN Xiaobin, ZHANG Lifeng, LI Yi, 2015: Statistical Analysis of Thunderstorms on the Eastern Tibetan Plateau Based on Modified Thunderstorm Indices, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 515-527.  doi: 10.1007/s00376-014-4039-x
    [12] Long S. CHIU, Zhong LIU, Jearanai VONGSAARD, Stanley MORAIN, Amy BUDGE, Paul NEVILLE, Chandra BALES, 2006: Comparison of TRMM and Water District Rain Rates over New Mexico, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 1-13.  doi: 10.1007/s00376-006-0001-x
    [13] LI Xiangshu, GUO Xueliang, FU Danhong, 2013: TRMM-retrieved Cloud Structure and Evolution of MCSs over the Northern South China Sea and Impacts of CAPE and Vertical Wind Shear, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 77-88.  doi: 10.1007/s00376-012-2055-2
    [14] Dong ZHENG, Yijun ZHANG, Qing MENG, Luwen CHEN, Jianru DAN, 2016: Climatology of Lightning Activity in South China and Its Relationships to Precipitation and Convective Available Potential Energy, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 365-376.  doi: 10.1007/s00376-015-5124-5
    [15] Dongxia LIU, Xiushu QIE, Yichen CHEN, Zhuling SUN, Shanfeng YUAN, 2020: Investigating Lightning Characteristics through a Supercell Storm by Comprehensive Coordinated Observations over North China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 861-872.  doi: 10.1007/s00376-020-9264-x
    [16] CHEN Haoming, YUAN Weihua, LI Jian, YU Rucong, 2012: A Possible Cause for Different Diurnal Variations of Warm Season Rainfall as Shown in Station Observations and TRMM 3B42 Data over the Southeastern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 193-200.  doi: 10.1007/s00376-011-0218-1
    [17] Fengxia GUO, Xiaoyu JU, Min BAO, Ganyi LU, Zupei LIU, Yawen LI, Yijun MU, 2017: Relationship between Lightning Activity and Tropospheric Nitrogen Dioxide and the Estimation of Lightning-produced Nitrogen Oxides over China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 235-245.  doi: 10.1007/s00376-016-6087-x
    [18] Jidong GAO, Keith BREWSTER, Ming XUE, 2006: A Comparison of the Radar Ray Path Equations and Approximations for Use in Radar Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 190-198.  doi: 10.1007/s00376-006-0190-3
    [19] Rong KONG, Ming XUE, Edward R. MANSELL, Chengsi LIU, Alexandre O. FIERRO, 2024: Assimilation of GOES-R Geostationary Lightning Mapper Flash Extent Density Data in GSI 3DVar, EnKF, and Hybrid En3DVar for the Analysis and Short-Term Forecast of a Supercell Storm Case, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 263-277.  doi: 10.1007/s00376-023-2340-2
    [20] Kong Fanyou, Huang Meiyuan, Xu Huaying, 1993: Three-Dimensional Numerical Simulations of the Effects of a Cold Water Surface on the Evolution and Propagation of Thunderstorms, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 261-272.  doi: 10.1007/BF02658132

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 05 June 2012
Manuscript revised: 10 January 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Case Studies of Sprite-producing and Non-sprite-producing Summer Thunderstorms

  • 1. Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029; 
  • 2. Henan Meteorological Bureau, Henan 450003; 
  • 3. Shandong Research Institute of Meteorology, Ji'nan 250031
Fund Project:  This research was supported jointly by Strategic Priority Research Program on Space Science (Grant No. XDA04072400), Project Supported by the Specialized Research Fund for State Key Laboratories, Youth Innovation Promotion Association, CAS, National Basic Research Program of China (973 Program, Grant No. 2010CB428602), the Special Fund for Public Welfare Industry (GYHY201006005-07), National Natural Science Foundation of China (Grant Nos. 41374153, 40930949, 40804028) and Beijing Natural Science Foundation. The authors would like to thank Kochi University, Wyoming University, NOAA/OAR/ESRL PSD, NASA/Goddard Space Flight Center.

Abstract: Three summer thunderstorms in the eastern region of China were analyzed in detail using multiple data, including Doppler radar, lightning location network, TRMM (Tropical Rainfall Measuring Mission), MTSAT (Multi-Function Transport Satellite) images, NCEP (National Centers for Environmental Prediction) Reanalysis, and radiosonde. Two of the three storms were sprite-producing and the other was non-sprite-producing. The two sprite-producing storms occurred on 12 August and 2728 July 2007, producing 16 and one sprite, respectively. The non-sprite-producing storm occurred on 2930 July 2007. The major objective of the study was to try to find possible differences between sprite-producing and non-sprite producing storms using the multiple datasets. The results showed that the convection in the 12 August storm was the strongest compared with the other storms, and it produced the largest number of sprites. Precipitation ice, cloud ice and cloud water content in the convective regions in the 12 August storm were larger than in the other two storms, but the opposite was true in the weak convective regions. The storm microphysical properties along lines through parent CG (cloud-to-ground lightning) locations showed no special characteristics related to sprites. The flash rate evolution in the 12 August storm provided additional confirmation that major sprite activity coincides with a rapid decrease in the negative CG flash rate. However, the evolution curve of the CG flash rate was erratic in the sprite-producing storm on 2728 July, which was significantly different from that in the 12 August storm. The average positive CG peak current in sprite-producing storms was larger than that in the non-sprite-producing one.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint