Advanced Search
Article Contents

An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model

Fund Project:

doi: 10.1007/s00376-013-2131-2

  • Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Ocean-Atmosphere-Land System model: Grid-point Version 2 (FGOALS-g2) are analyzed and compared with observations. The insignificant, albeit positive, lag correlations between the SSTAs in the southeastern tropical Indian Ocean (STIO) in fall and the SSTAs in the central-eastern Pacific cold tongue in the following summer through fall are found to be not in agreement with the observational analysis. The model, however, does reproduce the significant lag correlations between the SSHAs in the STIO in fall and those in the cold tongue at the one-year time lag in the observations. These, along with the significant lag correlations between the SSTAs in the STIO in fall and the subsurface temperature anomalies in the equatorial Pacific vertical section in the following year, suggest that the Indonesian Throughflow plays an important role in propagating the Indian Ocean anomalies into the equatorial Pacific Ocean. Analyses of the interannual anomalies of the Indonesian Throughflow transport suggest that the FGOALS-g2 climate system simulates, but underestimates, the oceanic channel dynamics between the Indian and Pacific Oceans. FGOALS-g2 is shown to produce lag correlations between the SZWAs over the western equatorial Pacific in fall and the cold tongue SSTAs at the one-year time lag that are too strong to be realistic in comparison with observations. The analyses suggest that the atmospheric bridge over the Indo-Pacific Ocean is overestimated in the FGOALS-g2 coupled climate model.
    摘要: Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Ocean-Atmosphere-Land System model: Grid-point Version 2 (FGOALS-g2) are analyzed and compared with observations. The insignificant, albeit positive, lag correlations between the SSTAs in the southeastern tropical Indian Ocean (STIO) in fall and the SSTAs in the central-eastern Pacific cold tongue in the following summer through fall are found to be not in agreement with the observational analysis. The model, however, does reproduce the significant lag correlations between the SSHAs in the STIO in fall and those in the cold tongue at the one-year time lag in the observations. These, along with the significant lag correlations between the SSTAs in the STIO in fall and the subsurface temperature anomalies in the equatorial Pacific vertical section in the following year, suggest that the Indonesian Throughflow plays an important role in propagating the Indian Ocean anomalies into the equatorial Pacific Ocean. Analyses of the interannual anomalies of the Indonesian Throughflow transport suggest that the FGOALS-g2 climate system simulates, but underestimates, the oceanic channel dynamics between the Indian and Pacific Oceans. FGOALS-g2 is shown to produce lag correlations between the SZWAs over the western equatorial Pacific in fall and the cold tongue SSTAs at the one-year time lag that are too strong to be realistic in comparison with observations. The analyses suggest that the atmospheric bridge over the Indo-Pacific Ocean is overestimated in the FGOALS-g2 coupled climate model.
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scot, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231.
    Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z. L. Yang, 2002: The landsurface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15, 3123–3149.
    Dickinson, R. E., K. W. Oleson, G. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z. L. Yang, and X. Zeng, 2006: The community land model and its climate statistics as a component of the community climate system model. J. Climate, 19, 2302–2324.
    Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos sea ice model documentation and software user's manual Version 4.0, LA-CC-06-012. [Available online at http://oceans11.lanl.gov/trac/CICE.]
    Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year's El Ni?o. Nature Geoscience, 3, 168–172.
    Jury, M. R., and B. Huang, 2004: The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep-Sea Res. I, 41, 2123–2136.
    Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.
    Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.
    Kug, J.-S., and I.-S. Kang, 2006: Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33, doi: 10.1029/2005GL024916.
    Lau, N. C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 3–20.
    Lau, N. C., A. Leetmaa, M. J. Nath, and H. L. Wang, 2005: Influence of ENSO-induced Indo-western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J. Climate, 18, 2922–2942.
    Li, L., and Coauthors, 2010: Development and evaluation of GAMIL2.0 and FGOALS2.0-g. The 5th C20C Workshop, Beijing, IAP, 1–24.
    Li, L. J., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30(3), 543–560, doi: 10.100/s00376-012-2140-6.
    Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) Version 2. Acta Meteorologica Sinica, doi: 10.1007/s13351-012-0305-y.
    Luo, J.-J., R. C. Zhang, S. K. Behera, Y. Masumoto, F. F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Ni?o and extreme Indian Ocean dipole. J. Climate, 23, doi: 10.1175/2009JCLI3104.1.
    MacDonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Progress in Oceanography, 41, 281–382.
    Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103, 27589–27602.
    Meehl, G. A., and S. Bony, 2011: Introduction to CMIP5. Clivar Exchanges No. 56, 16(2), 4–5.
    Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.
    Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.
    Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. [Available online at http://cmippcmdi.llnl.gov/cmip5/ experimen-t_design.htm.l.]
    Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, doi: 10.1175/BAMS-D-11-00094.1.
    White, W. B., 1995: Design of a global observing system for gyrescale upper ocean temperature variability. Progress in Oceanography, 36, 169–217.
    Wijffels, S. E., G. Meyers, and J. S. Godfrey, 2008: A twenty year average of the Indonesian throughflow: Regional currents and the interbasin exchange. J. Phys. Oceanogr., 38, 1965–1978.
    Yuan, D. L., and H. Liu, 2009: Long-wave dynamics of sea level variations during Indian Ocean dipole events. J. Phys. Oceanogr., 39, 1115–1132, doi: 10.1175/ 2008JPO3900.1.
    Yuan, D. L., and Coauthors, 2011: Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: Roles of the Indonesian throughflow. J. Climate, 15, 3597–3608.
    Yuan, D. L., H. Zhou, and X. Zhao, 2012: Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean dipole through the Indonesian Throughflow. J. Climate, doi: 10.1175/JCLI-D-12-00117.1.
  • [1] ZHOU Qian, DUAN Wansuo, MU Mu, FENG Rong, 2015: Influence of Positive and Negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow: Results from Sensitivity Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 783-793.  doi: 10.1007/s00376-014-4141-0
    [2] Xia ZHAO, Dongliang YUAN, Guang YANG, Hui ZHOU, Jing WANG, 2016: Role of the Oceanic Channel in the Relationships between the Basin/Dipole Mode of SST Anomalies in the Tropical Indian Ocean and ENSO Transition, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1386-1400.  doi: 10.1007/s00376-016-6048-4
    [3] YUAN Yuan, C. L. Johnny CHAN, ZHOU Wen, LI Chongyin, 2008: Decadal and Interannual Variability of the Indian Ocean Dipole, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 856-866.  doi: 10.1007/s00376-008-0856-0
    [4] XIA Kun, WANG Bin, LI Lijuan, SHEN Si, HUANG Wenyu, XU Shiming, DONG Li, LIU Li, 2014: Evaluation of Snow Depth and Snow Cover Fraction Simulated by Two Versions of the Flexible Global Ocean-Atmosphere-Land System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 407-420.  doi: 10.1007/s00376-013-3026-y
    [5] HUANG Wenyu, WANG Bin*, LI Lijuan, DONG Li, LIN Pengfei, YU Yongqiang, ZHOU Tianjun, LIU Li, XU Shiming, XIA Kun, PU Ye, WANG Lu, LIU Mimi, SHEN Si, HU Ning, WANG Yong, SUN Wenqi, and DONG Fang, 2014: Variability of Atlantic Meridional Overturning Circulation in FGOALS-g2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 95-109.  doi: 10.1007/s00376-013-2155-7
    [6] LIU Hailong, LI Wei, ZHANG Xuehong, 2005: Climatology and Variability of the Indonesian Throughflow in an Eddy-permitting Oceanic GCM, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 496-508.  doi: 10.1007/BF02918483
    [7] LIU Qinyan, WANG Dongxiao, ZHOU Wen, XIE Qiang, ZHANG Yan, 2010: Covariation of the Indonesian Throughflow and South China Sea Throughflow Associated with the 1976/77 Regime Shift, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 87-94.  doi: 10.1007/s00376-009-8061-3
    [8] Song YANG, DING Xiaoli, ZHENG Dawei, Soo-Hyun YOO, 2007: Time-Frequency Characteristics of the Relationships Between Tropical Indo-Pacific SSTs, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 343-359.  doi: 10.1007/s00376-007-0343-z
    [9] Xiaoxuan ZHAO, Riyu LU, 2020: Vertical Structure of Interannual Variability in Cross-Equatorial Flows over the Maritime Continent and Indian Ocean in Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 173-186.  doi: 10.1007/s00376-019-9103-0
    [10] Yang AI, Ning JIANG, Weihong QIAN, Jeremy Cheuk-Hin LEUNG, Yanying CHEN, 2022: Strengthened Regulation of the Onset of the South China Sea Summer Monsoon by the Northwest Indian Ocean Warming in the Past Decade, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 943-952.  doi: 10.1007/s00376-021-1364-8
    [11] Yawen DUAN, Peili WU, Xiaolong CHEN, Zhuguo MA, 2018: Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1077-1093.  doi: 10.1007/s00376-018-7264-x
    [12] Li Chongyin, Mu Mingquan, 2001: The Influence of the Indian Ocean Dipole on Atmospheric Circulation and Climate, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 831-843.
    [13] MA Shuangmei, ZHOU Tianjun, 2015: Precipitation Changes in Wet and Dry Seasons over the 20th Century Simulated by Two Versions of the FGOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 839-854.  doi: 10.1007/s00376-014-4136-x
    [14] Yiyong LUO, Jian LU, Fukai LIU, Xiuquan WAN, 2016: The Positive Indian Ocean Dipole-like Response in the Tropical Indian Ocean to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 476-488.  doi: 10.1007/s00376-015-5027-5
    [15] Rong FENG, Wansuo DUAN, 2019: Indian Ocean Dipole-related Predictability Barriers Induced by Initial Errors in the Tropical Indian Ocean in a CGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 658-668.  doi: 10.1007/s00376-019-8224-9
    [16] WANG Zhiren, WU Dexing, CHEN Xue'en, QIAO Ran, 2013: ENSO Indices and Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1491-1506.  doi: 10.1007/s00376-012-2238-x
    [17] Rong FENG, Wansuo DUAN, 2018: Investigating the Initial Errors that Cause Predictability Barriers for Indian Ocean Dipole Events Using CMIP5 Model Outputs, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1305-1320.  doi: 10.1007/s00376-018-7214-7
    [18] Xinyi XING, Xianghui FANG, Da PANG, Chaopeng JI, 2024: Seasonal Variation of the Sea Surface Temperature Growth Rate of ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 465-477.  doi: 10.1007/s00376-023-3005-x
    [19] LI Gang*, LI Chongyin, TAN Yanke, and BAI Tao, 2014: The Interdecadal Changes of South Pacific Sea Surface Temperature in the Mid-1990s and Their Connections with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 66-84.  doi: 10.1007/s00376-013-2280-3
    [20] Xiaofei WU, Jiangyu MAO, 2019: Decadal Changes in Interannual Dependence of the Bay of Bengal Summer Monsoon Onset on ENSO Modulated by the Pacific Decadal Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1404-1416.  doi: 10.1007/s00376-019-9043-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 26 June 2012
Manuscript revised: 09 January 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model

    Corresponding author: YUAN Dongliang; 
  • 1. Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071;
  • 2. University of Chinese Academy of Sciences, Beijing 100049;
  • 3. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Fund Project:  This work was supported by the China 973 Project (Grant No. 2012CB956000) and the NSFC (Grant Nos. 40888001, 41176019, 41005042 and 40975065). The authors would like to thank the World Climate Research Programme Coupled Model Working Group, which is responsible for the CMIP project, and the LASG-IAP climate modeling group for producing and sharing their model output.

Abstract: Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Ocean-Atmosphere-Land System model: Grid-point Version 2 (FGOALS-g2) are analyzed and compared with observations. The insignificant, albeit positive, lag correlations between the SSTAs in the southeastern tropical Indian Ocean (STIO) in fall and the SSTAs in the central-eastern Pacific cold tongue in the following summer through fall are found to be not in agreement with the observational analysis. The model, however, does reproduce the significant lag correlations between the SSHAs in the STIO in fall and those in the cold tongue at the one-year time lag in the observations. These, along with the significant lag correlations between the SSTAs in the STIO in fall and the subsurface temperature anomalies in the equatorial Pacific vertical section in the following year, suggest that the Indonesian Throughflow plays an important role in propagating the Indian Ocean anomalies into the equatorial Pacific Ocean. Analyses of the interannual anomalies of the Indonesian Throughflow transport suggest that the FGOALS-g2 climate system simulates, but underestimates, the oceanic channel dynamics between the Indian and Pacific Oceans. FGOALS-g2 is shown to produce lag correlations between the SZWAs over the western equatorial Pacific in fall and the cold tongue SSTAs at the one-year time lag that are too strong to be realistic in comparison with observations. The analyses suggest that the atmospheric bridge over the Indo-Pacific Ocean is overestimated in the FGOALS-g2 coupled climate model.

摘要: Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Ocean-Atmosphere-Land System model: Grid-point Version 2 (FGOALS-g2) are analyzed and compared with observations. The insignificant, albeit positive, lag correlations between the SSTAs in the southeastern tropical Indian Ocean (STIO) in fall and the SSTAs in the central-eastern Pacific cold tongue in the following summer through fall are found to be not in agreement with the observational analysis. The model, however, does reproduce the significant lag correlations between the SSHAs in the STIO in fall and those in the cold tongue at the one-year time lag in the observations. These, along with the significant lag correlations between the SSTAs in the STIO in fall and the subsurface temperature anomalies in the equatorial Pacific vertical section in the following year, suggest that the Indonesian Throughflow plays an important role in propagating the Indian Ocean anomalies into the equatorial Pacific Ocean. Analyses of the interannual anomalies of the Indonesian Throughflow transport suggest that the FGOALS-g2 climate system simulates, but underestimates, the oceanic channel dynamics between the Indian and Pacific Oceans. FGOALS-g2 is shown to produce lag correlations between the SZWAs over the western equatorial Pacific in fall and the cold tongue SSTAs at the one-year time lag that are too strong to be realistic in comparison with observations. The analyses suggest that the atmospheric bridge over the Indo-Pacific Ocean is overestimated in the FGOALS-g2 coupled climate model.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint