Advanced Search
Article Contents

Evaluation of Spring Persistent Rainfall over East Asia in CMIP3/CMIP5 AGCM Simulations

Fund Project:

doi: 10.1007/s00376-013-2139-7

  • The progress made from Phase 3 to Phase 5 of the Coupled Model Intercomparison Project (CMIP3 to CMIP5) in simulating spring persistent rainfall (SPR) over East Asia was examined from the outputs of nine atmospheric general circulation models (AGCMs). The majority of the models overestimated the precipitation over the SPR domain, with the mean latitude of the SPR belt shifting to the north. The overestimation was about 1mm d-1 in the CMIP3 ensemble, and the northward displacement was about 3, while in the CMIP5 ensemble the overestimation was suppressed to 0.7 mm d-1 and the northward shift decreased to 2.5. The SPR features a northeast-southwest extended rain belt with a slope of 0.4N/E. The CMIP5 ensemble yielded a smaller slope (0.2N/E), whereas the CMIP3 ensemble featured an unrealistic zonally-distributed slope. The CMIP5 models also showed better skill in simulating the interannual variability of SPR. Previous studies have suggested that the zonal land-sea thermal contrast and sensible heat flux over the southeastern Tibetan Plateau are important for the existence of SPR. These two thermal factors were captured well in the CMIP5 ensemble, but underestimated in the CMIP3 ensemble. The variability of zonal land-sea thermal contrast is positively correlated with the rainfall amount over the main SPR center, but it was found that an overestimated thermal contrast between East Asia and South China Sea is a common problem in most of the CMIP3 and CMIP5 models. Simulation of the meridional thermal contrast is therefore important for the future improvement of current AGCMs.
  • 1. Chen, H.,T. Zhou,R. B. Neale,X. Wu, and G. J. Zhang,2010:Performance of the new NCAR CAM3. 5 in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme.J. Climate, 23(13), 3657-3675, doi: 10.1175/2010JCLI3022.1.
    2. Hasumi, H., and S. Emori,2004: K-1 coupled model (MIROC) description, K-1 technical report 1. Tech. Report, CCSR, The University of Tokyo, 34pp.
    3. Hu, Z. Z.,S. Yang, and R. Wu,2003:Long-term climate variations in China and global warming signals.J. Geophys. Res., 108(D19), 4614, doi: 10.1029/2003JD003651.
    4. IPCC,2007:Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1009pp.
    5. Kalnay, E., and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull. Amer. Meteor. Soc., 77, 437-471.
    6. Li, J., and L. Zhang,2009:Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models.Climate Dyn., 32, 935-968, doi: 10.1007/s00382-008-0465-8.
    7. Li, J.,Y. Liu, and G. Wu,2009:Cloud radiative forcing in Asian monsoon region simulated by IPCC AR4 AMIP models.Adv. Atmos. Sci., 26(5), 923-939, doi: 10.1007/s00376-009-8111-x.
    8. Liu, Y.,G. Wu, and R. Ren,2004:Relationship between the subtropical anticyclone and diabatic heating.J. Climate, 17(4), 682-698.
    9. Rayner, N.,D. Parker,E. Horton, C. Folland , L. Alexand er,D. Rowell,E. Kent, and A. Kaplan,2003:Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century.J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD002670.
    10. Sperber, K. R.,H. Annamalai,I.-S. Kang,A. Kitoh,A. Moise,A. Turner, B. Wang and T. Zhou,2012:The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century.Climate Dyn., 1-34, doi: 10.1007/s00382-012-1607-6.
    11. Taylor, K. E.,2001:Summarizing multiple aspects of model performance in a single diagram.J. Geophys. Res., 106(D7), 7183-7192, doi: 10.1029/2000JD 900719.
    12. Taylor, K. E.,R. J. Stouffer, and G. A. Meehl,2012:An overview of CMIP5 and the experiment design.Bull. Amer. Meteor. Soc., 93, 485-498, doi: http://dx.doi.org/10.1175/BAMS-D-11-00094.1.
    13. Tian, S. F., and T. Yasunari,1998:Climatological aspects and mechanism of spring persistent rains over central China.J. Meteor. Soc. Japan, 76, 57-71.
    14. Uppala, S. M., and Coauthors,2005:The ERA40 re-analysis.Quart. J. Roy. Meteor. Soc., 131(612), 2961-3012, doi: 10.1256/qj.04.176.
    15. Wan, R. J., and G. X. Wu,2007:Mechanism of the spring persistent rains over southeastern China.Science in China (D), 50(1), 130-144, doi: 10.1007/s11430-007-2069-2.
    16. Wan, R. J., and G. X. Wu,2009:Temporal and spatial distributions of the spring persistent rains over southeastern China.Acta Meterologica Sinica, 23 (5), 598-608. (in Chinese)
    17. Wan, R. J.,B. K. Zhao, and G. X. Wu,2009:New evidences on the climatic causes of the formation of the spring persistent rains over southeastern China.Adv. Atmos. Sci., 26(6), 1081-1087, doi: 10.1007/s00376-009-7202-z.
    18. Wang, H. J.,F. Xue, and G. Q. Zhou,2002:The spring monsoon in south china and its relationship to Large-Scale circulation features.Adv. Atmos. Sci., 19(4), 651-664, doi: 10.1007/s00376-002-0005-0.
    19. Xie, P., and P. A. Arkin,1997:Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs.Bull. Amer. Meteor. Soc., 78, 2539-2558.
    20. Xin, X. G.,T. J. Zhou, and Z. X. Li,2011:Regional climate simulation over eastern China in spring by a variable resolution AGCM.Acta Meteorologica Sinica, 69(4), 682-692. (in Chinese)
    21. Xue, Y.,H. Juang,W. Li,S. Prince,R. DeFries,Y. Jiao, and R. Vasic,2004:Role of land surface processes in monsoon development: East Asia and West Africa.J. Geophys. Res., 109, D03105, doi: 10.1029/2003JD003556.
    22. Yanai, M.,C. Li, and Z. Song,1992:Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon.J. Meteor. Soc. Japan, 70(1), 319-350.
    23. Ye, D. Z., and G. X. Wu,1998:The role of the heat source of the Tibetan Plateau in the general circulation.Meteor. Atmos. Phys., 67(1), 181-198.
    24. Yu, R. C.,W. Li,X. H. Zhang,Y. M. Liu,Y. Q. Yu,H. L. Liu, and T. J. Zhou,2000:Climatic features related to eastern China summer rainfalls in the NCAR CCM3.Adv. Atmos. Sci., 17(4), 503-518, doi: 10.1007/s00376-000-0014-9.
    25. Zhang, J.,T. J. Zhou,R. C. Yu, and X. G. Xin,2009:Atmospheric water vapor transport and corresponding typical anomalous spring rainfall patterns in China.Chinese J. Atmos. Sci., 33(1), 121-134. (in Chinese)
    26. Zhou, T. J., and R. C. Yu,2005:Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China.J. Geophys. Res., 110, D08104, doi: 10.1029/2004JD005413.
    27. Zhou, T., and L. Zou,2010:Understanding the predictability of East Asian summer monsoon from the reproduction of land-sea thermal contrast change in AMIP-type simulation.J. Climate, 23(22), 6009-6026, doi: 10.1175/2010JCLI3546.1.
    28. Zhou, T.,B. Wu, and B. Wang,2009:How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon?J. Climate, 22(5), 1159-1173, doi: 10.1175/2008JCLI2245.1.
    29. Zou, L.,T. Zhou,L. Z.-X. Li,J. Zhang,2010:East China summer rainfall variability of 1958-2000: Dynamical downscaling with a variable-resolution AGCM. J. Climate, 23, 6394-6408.
  • [1] XU Kang, SU Jingzhi, and ZHU Congwen, 2014: The Natural Oscillation of Two Types of ENSO Events Based on Analyses of CMIP5 Model Control Runs, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 801-813.  doi: 10.1007/s00376-013-3153-5
    [2] REN Rongcai, YANG Yang, 2012: Changes in Winter Stratospheric Circulation in CMIP5 Scenarios Simulated by the Climate System Model FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1374-1389.  doi: 10.1007/s00376-012-1184-y
    [3] Yuanxin LIU, Lijing CHENG, Yuying PAN, Zhetao TAN, John ABRAHAM, Bin ZHANG, Jiang ZHU, Junqiang SONG, 2022: How Well Do CMIP6 and CMIP5 Models Simulate the Climatological Seasonal Variations in Ocean Salinity?, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1650-1672.  doi: 10.1007/s00376-022-1381-2
    [4] Xiaolei CHEN, Yimin LIU, Guoxiong WU, 2017: Understanding the Surface Temperature Cold Bias in CMIP5 AGCMs over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1447-1460.  doi: 10.1007s00376-017-6326-9
    [5] LIU Yonghe, FENG Jinming, MA Zhuguo, 2014: An Analysis of Historical and Future Temperature Fluctuations over China Based on CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 457-467.  doi: 10.1007/s00376-013-3093-0
    [6] YANG Shili, FENG Jinming, DONG Wenjie, CHOU Jieming, 2014: Analyses of Extreme Climate Events over China Based on CMIP5 Historical and Future Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1209-1220.  doi: 10.1007/s00376-014-3119-2
    [7] Yuanhai FU, Riyu LU, Dong GUO, 2021: Projected Increase in Probability of East Asian Heavy Rainy Summer in the 21st Century by CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1635-1650.  doi: 10.1007/s00376-021-0347-0
    [8] RAO Jian, REN Rongcai, YANG Yang, 2015: Parallel Comparison of the Northern Winter Stratospheric Circulation in Reanalysis and in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 952-996.  doi: 10.1007/s00376-014-4192-2
    [9] JI Mingxia, HUANG Jianping, XIE Yongkun, LIU Jun, 2015: Comparison of Dryland Climate Change in Observations and CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1565-1574.  doi: 10.1007/s00376-015-4267-8
    [10] FENG Juan, LI Jianping, ZHU Jianlei, LI Fei, SUN Cheng, 2015: Simulation of the Equatorially Asymmetric Mode of the Hadley Circulation in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1129-1142.  doi: 10.1007/s00376-015-4157-0
    [11] Huanhuan ZHU, Zhihong JIANG, Juan LI, Wei LI, Cenxiao SUN, Laurent LI, 2020: Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1119-1132.  doi: 10.1007/s00376-020-9289-1
    [12] Zhongda LIN, Yuanhai FU, Riyu LU, 2019: Intermodel Diversity in the Zonal Location of the Climatological East Asian Westerly Jet Core in Summer and Association with Rainfall over East Asia in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 614-622.  doi: 10.1007/s00376-019-8221-z
    [13] SONG Yi, YU Yongqiang, LIN Pengfei, 2014: The Hiatus and Accelerated Warming Decades in CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1316-1330.  doi: 10.1007/s00376-014-3265-6
    [14] Sun-Hee SHIN, Ok-Yeon KIM, Dongmin KIM, Myong-In LEE, 2017: Cloud Radiative Effects and Changes Simulated by the Coupled Model Intercomparison Project Phase 5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 859-876.  doi: 10.1007/s00376-017-6089-3
    [15] Yan SUN, Fan WANG, De-Zheng SUN, 2016: Weak ENSO Asymmetry Due to Weak Nonlinear Air-Sea Interaction in CMIP5 Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 352-364.  doi: 10.1007/s00376-015-5018-6
    [16] Xiao-Tong ZHENG, Lihui GAO, Gen LI, Yan DU, 2016: The Southwest Indian Ocean Thermocline Dome in CMIP5 Models: Historical Simulation and Future Projection, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 489-503.  doi: 10.1007/s00376-015-5076-9
    [17] TIAN Di, GUO Yan*, DONG Wenjie, 2015: Future Changes and Uncertainties in Temperature and Precipitation over China Based on CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 487-496.  doi: 10.1007/s00376-014-4102-7
    [18] SONG Yajuan, WANG Lei, LEI Xiaoyan, WANG Xidong, 2015: Tropical Cyclone Genesis Potential Index over the Western North Pacific Simulated by CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1539-1550.  doi: 10.1007/s00376-015-4162-3
    [19] ZHI Hai, ZHANG Rong-Hua, LIN Pengfei, WANG Lanning, 2015: Quantitative Analysis of the Feedback Induced by the Freshwater Flux in the Tropical Pacific Using CMIP5, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1341-1353.  doi: 10.1007/s00376-015-5064-0
    [20] XIA Jiangjiang, YAN Zhongwei, JIA Gensuo, ZENG Heqing, Philip Douglas JONES, ZHOU Wen, ZHANG Anzhi, 2015: Projections of the Advance in the Start of the Growing Season during the 21st Century Based on CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 831-838.  doi: 10.1007/s00376-014-4125-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 26 June 2012
Manuscript revised: 05 February 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Evaluation of Spring Persistent Rainfall over East Asia in CMIP3/CMIP5 AGCM Simulations

    Corresponding author: ZHOU Tianjun, zhoutj@lasg.iap.ac.cn
  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029; 
  • 2. Laboratoire de Météorologie Dynamique/The Centre National de la Recherche Scientifique, Université Paris 6, France; 
  • 3. National Climate Center, China Meteorological Administration, Beijing 100081
Fund Project:  The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. This work was jointly supported by the Major State Basic Research Development Program of China (973 Program) under Grant No. 2010CB951903, the National Natural Science Foundation of China under grant Nos. 41205043, 41105054 and 40890054 and China Meteorological Administration (GYHY201306062).

Abstract: The progress made from Phase 3 to Phase 5 of the Coupled Model Intercomparison Project (CMIP3 to CMIP5) in simulating spring persistent rainfall (SPR) over East Asia was examined from the outputs of nine atmospheric general circulation models (AGCMs). The majority of the models overestimated the precipitation over the SPR domain, with the mean latitude of the SPR belt shifting to the north. The overestimation was about 1mm d-1 in the CMIP3 ensemble, and the northward displacement was about 3, while in the CMIP5 ensemble the overestimation was suppressed to 0.7 mm d-1 and the northward shift decreased to 2.5. The SPR features a northeast-southwest extended rain belt with a slope of 0.4N/E. The CMIP5 ensemble yielded a smaller slope (0.2N/E), whereas the CMIP3 ensemble featured an unrealistic zonally-distributed slope. The CMIP5 models also showed better skill in simulating the interannual variability of SPR. Previous studies have suggested that the zonal land-sea thermal contrast and sensible heat flux over the southeastern Tibetan Plateau are important for the existence of SPR. These two thermal factors were captured well in the CMIP5 ensemble, but underestimated in the CMIP3 ensemble. The variability of zonal land-sea thermal contrast is positively correlated with the rainfall amount over the main SPR center, but it was found that an overestimated thermal contrast between East Asia and South China Sea is a common problem in most of the CMIP3 and CMIP5 models. Simulation of the meridional thermal contrast is therefore important for the future improvement of current AGCMs.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint