Advanced Search
Article Contents

Simulation of Sea Ice in FGOALS-g2: Climatology and Late 20th Century Changes


doi: 10.1007/s00376-013-2158-4

  • Sea ice is an important component in the Earth's climate system. Coupled climate system models are indispensable tools for the study of sea ice, its internal processes, interaction with other components, and projection of future changes. This paper evaluates the simulation of sea ice by the Flexible Global Ocean-Atmosphere-Land System model Grid-point Version 2 (FGOALS-g2), in the fifth phase of the Coupled Model Inter-comparison Project (CMIP5), with a focus on historical experiments and late 20th century simulation. Through analysis, we find that FGOALS-g2 produces reasonable Arctic and Antarctic sea ice climatology and variability. Sea ice spatial distribution and seasonal change characteristics are well captured. The decrease of Arctic sea ice extent in the late 20th century is reproduced in simulations, although the decrease trend is lower compared with observations. Simulated Antarctic sea ice shows a reasonable distribution and seasonal cycle with high accordance to the amplitude of winter--summer changes. Large improvement is achieved as compared with FGOALS-g1.0 in CMIP3. Diagnosis of atmospheric and oceanic forcing on sea ice reveals several shortcomings and major aspects to improve upon in the future: (1) ocean model improvements to remove the artificial island at the North Pole; (2) higher resolution of the atmosphere model for better simulation of important features such as, among others, the Icelandic Low and westerly wind over the Southern Ocean; and (3) ocean model improvements to accurately receive freshwater input from land, and higher resolution for resolving major water channels in the Canadian Arctic Archipelago.
  • [1] HUANG Wenyu, WANG Bin*, LI Lijuan, DONG Li, LIN Pengfei, YU Yongqiang, ZHOU Tianjun, LIU Li, XU Shiming, XIA Kun, PU Ye, WANG Lu, LIU Mimi, SHEN Si, HU Ning, WANG Yong, SUN Wenqi, and DONG Fang, 2014: Variability of Atlantic Meridional Overturning Circulation in FGOALS-g2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 95-109.  doi: 10.1007/s00376-013-2155-7
    [2] WANG Bin, LIU Mimi, YU Yongqiang, LI Lijuan, LIN Pengfei, DONG Li, LIU Li, LIU Jiping, HUANG Wenyu, XU Shiming, SHEN Si, PU Ye, XUE Wei, XIA Kun, WANG Yong, SUN Wenqi, HU Ning, HUANG Xiaomeng, LIU Hailong, ZHENG Weipeng, WU Bo, ZHOU Tianjun, and YANG Guangwen, 2013: Preliminary Evaluations of FGOALS-g2 for Decadal Predictions, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 674-683.  doi: 10.1007/s00376-012-2084-x
    [3] LIN Pengfei, YU Yongqiang, and LIU Hailong, 2013: Oceanic Climatology in the Coupled Model FGOALS-g2: Improvements and Biases, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 819-840.  doi: 10.1007/s00376-012-2137-1
    [4] XIAO Chuliang and ZHANG Yaocun, , 2013: Simulation of the Westerly Jet Axis in Boreal Winter by the Climate System Model FGOALS-g2, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 754-765.  doi: 10.1007/s00376-012-2167-8
    [5] XU Tengfei, YUAN Dongliang, YU Yongqiang, and ZHAO Xia, 2013: An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 997-1016.  doi: 10.1007/s00376-013-2131-2
    [6] ZHOU Tianjun, SONG Fengfei, and CHEN Xiaolong, 2013: Historical Evolution of Global and Regional Surface Air Temperature Simulated by FGOALS-s2 and FGOALS-g2: How Reliable Are the Model Results?, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 638-657.  doi: 10.1007/s00376-013-2205-1
    [7] LI Lijuan, LIN Pengfei, YU Yongqiang, WANG Bin, ZHOU Tianjun, LIU Li, LIU Jiping, BAO Qing, XU Shiming, HUANG Wenyu, XIA Kun, PU Ye, DONG Li, SHEN Si, LIU Yimin, HU Ning, LIU Mimi, SUN Wenqi, SHI Xiangjun, ZHENG Weipeng, WU Bo, SONG Mirong, LIU Hailong, ZHANG Xuehong, WU Guoxiong, XUE Wei, HUANG Xiaomeng, YANG Guangwen, SONG Zhenya, and QIAO Fangli, 2013: The Flexible Global Ocean-Atmosphere-Land System Model, Grid-point Version 2: FGOALS-g2, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 543-560.  doi: 10.1007/s00376-012-2140-6
    [8] Zhou Tianjun, Zhang Xuehong, Yu Yongqiang, Yu Rucong, Wang Shaowu, 2000: The North Atlantic Oscillation Simulated by Versions 2 and 4 of IAP/ LASG GOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 601-616.  doi: 10.1007/s00376-000-0023-8
    [9] Guo Yufu, Yu Yongqiang, Liu Xiying, Zhang Xuehong, 2001: Simulation of Climate Change Induced by CO2 Increasing for East Asia with IAP/LASG GOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 53-66.  doi: 10.1007/s00376-001-0004-6
    [10] Shengping HE, Helge DRANGE, Tore FUREVIK, Huijun WANG, Ke FAN, Lise Seland GRAFF, Yvan J. ORSOLINI, 2024: Relative Impacts of Sea Ice Loss and Atmospheric Internal Variability on the Winter Arctic to East Asian Surface Air Temperature Based on Large-Ensemble Simulations with NorESM2, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3006-9
    [11] LIU Yimin, HU Jun, HE Bian, BAO Qing, DUAN Anmin, and WU Guoxiong, 2013: Seasonal Evolution of Subtropical Anticyclones in the Climate System Model FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 593-606.  doi: 10.1007/s00376-012-2154-0
    [12] Yuyang GUO, Yongqiang YU, Pengfei LIN, Hailong LIU, Bian HE, Qing BAO, Bo AN, Shuwen ZHAO, Lijuan HUA, 2020: Simulation and Improvements of Oceanic Circulation and Sea Ice by the Coupled Climate System Model FGOALS-f3-L, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1133-1148.  doi: 10.1007/s00376-020-0006-x
    [13] Ping Chen, Jinping Zhao, Xiaoyu Wang, 2024: 4–6-year Periodic variation of Arctic Sea Ice Extent and its three main driven factors, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3104-3
    [14] Pengfei LIN, Bowen ZHAO, Jilin WEI, Hailong LIU, Wenxia ZHANG, Xiaolong CHEN, Jie JIANG, Mengrong DING, Wenmin MAN, Jinrong JIANG, Xu ZHANG, Yuewen DING, Wenrong BAI, Chenyang JIN, Zipeng YU, Yiwen LI, Weipeng ZHENG, Tianjun ZHOU, 2022: The Super-large Ensemble Experiments of CAS FGOALS-g3, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1746-1765.  doi: 10.1007/s00376-022-1439-1
    [15] Lanying CHEN, Renhao WU, Qi SHU, Chao MIN, Qinghua YANG, Bo HAN, 2023: The Arctic Sea Ice Thickness Change in CMIP6’s Historical Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2331-2343.  doi: 10.1007/s00376-022-1460-4
    [16] DONG Lu, and ZHOU Tianjun, 2013: Steric Sea Level Change in Twentieth Century Historical Climate Simulation and IPCC-RCP8.5 Scenario Projection: A Comparison of Two Versions of FGOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 841-854.  doi: 10.1007/s00376-012-2224-3
    [17] Peter CHU, CHEN Yuchun, Akira KUNINAKA, 2005: Seasonal Variability of the Yellow Sea/East China Sea Surface Fluxes and Thermohaline Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 1-20.  doi: 10.1007/BF02930865
    [18] YU Yongqiang, ZHENG Weipeng, WANG Bin, LIU Hailong, LIU Jiping, 2011: Versions g1.0 and g1.1 of the LASG/IAP Flexible Global Ocean--Atmosphere--Land System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 99-117.  doi: 10.1007/s00376-010-9112-5
    [19] Yanting LIU, Yang ZHANG, Sen GU, Xiu-Qun YANG, Lujun ZHANG, 2023: A Cross-Seasonal Linkage between Arctic Sea Ice and Eurasian Summertime Temperature Fluctuations, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2195-2210.  doi: 10.1007/s00376-023-2313-5
    [20] Xiaoran DONG, Yafei NIE, Jinfei WANG, Hao LUO, Yuchun GAO, Yun WANG, Jiping LIU, Dake CHEN, Qinghua YANG, 2024: Deep Learning Shows Promise for Seasonal Prediction of Antarctic Sea Ice in a Rapid Decline Scenario, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3380-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 16 July 2012
Manuscript revised: 22 December 2012
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Simulation of Sea Ice in FGOALS-g2: Climatology and Late 20th Century Changes

    Corresponding author: WANG Bin; 
  • 1. Ministry of Education Key Laboratory for Earth System Modeling, Center of Earth System Science, Tsinghua University, Beijing 100084
  • 2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Sea ice is an important component in the Earth's climate system. Coupled climate system models are indispensable tools for the study of sea ice, its internal processes, interaction with other components, and projection of future changes. This paper evaluates the simulation of sea ice by the Flexible Global Ocean-Atmosphere-Land System model Grid-point Version 2 (FGOALS-g2), in the fifth phase of the Coupled Model Inter-comparison Project (CMIP5), with a focus on historical experiments and late 20th century simulation. Through analysis, we find that FGOALS-g2 produces reasonable Arctic and Antarctic sea ice climatology and variability. Sea ice spatial distribution and seasonal change characteristics are well captured. The decrease of Arctic sea ice extent in the late 20th century is reproduced in simulations, although the decrease trend is lower compared with observations. Simulated Antarctic sea ice shows a reasonable distribution and seasonal cycle with high accordance to the amplitude of winter--summer changes. Large improvement is achieved as compared with FGOALS-g1.0 in CMIP3. Diagnosis of atmospheric and oceanic forcing on sea ice reveals several shortcomings and major aspects to improve upon in the future: (1) ocean model improvements to remove the artificial island at the North Pole; (2) higher resolution of the atmosphere model for better simulation of important features such as, among others, the Icelandic Low and westerly wind over the Southern Ocean; and (3) ocean model improvements to accurately receive freshwater input from land, and higher resolution for resolving major water channels in the Canadian Arctic Archipelago.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return