Advanced Search
Article Contents

Earth System Model FGOALS-s2: Coupling a Dynamic Global Vegetation and Terrestrial Carbon Model with the Physical Climate System Model

Fund Project:

doi: 10.1007/s00376-013-2169-1

  • Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows. The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr-1 and net primary production (NPP) is 50.9 PgC yr-1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there. On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model-simulated Nio3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 27 years. Further analysis indicates their correlation coefficient reaches 0.7 when NEP lags the ElNio3.4 index for about 12 months.
  • 1. Bacastow, R. B.,1976:Modulation of atmospheric carbon dioxide by the Southern Oscillation.Nature, 261, 116-118.
    2. Bao, Q.,Y. M. Liu,T. J. Zhou,Z. Z. Wang,G. X. Wu, and P. F. Wang,2006:The sensitivity of the spectral atmospheric general circulation model of LASG/IAP to the land process.Chinese J. Atmos. Sci., 30, 1077-1099. (in Chinese)
    3. Bao, Q.,G. X. Wu,Y. M. Liu,J. Yang,Z. Z. Wang, and T. J. Zhou,2010:An introduction to the coupled model FGOALS1.1-s and its performance in East Asia.Adv. Atmos. Sci., 27, 1131-1142, doi: 10.1007/s00376-010-9177-1.
    4. Bao, Q., and Coauthors,2012:The flexible global ocean-atmosphere-land system model, spectral version: FGOALS-s2.Adv. Atmos. Sci.,30(3), 561-576, doi: 10.1007/s00376-012-2113-9.
    5. Beer, C., and Coauthors,2010:Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate.Science, 329, 834-838.
    6. Bousquet, P.,P. Peylin,P. Ciais,C. L. Quere,P. Friedlingstein, and P. P. Tans,2000:Regional changes in cabon dioxide fluxes of land and oceans since 1980.Science, 290, 1342-1346.
    7. Brovkin, V.,A. Ganopolski, and Y. Svirezhev,1997:A continuous climate-vegetation classification for use in climate-biosphere studies.Ecological Modelling, 101, 251-261.
    8. Collins, W. D., and Coauthors,2006:The community climate system model version 3 (CCSM3).J. Climate, 19, 2122-2143.
    9. Cox, P. M.,2001: Description of the ``TRIFFID'' dynamic global vegetation model. Hadley Center Tech. Note 24, 1-16.
    10. Cox, P. M.,R. A. Betts,C. D. Jones,S. A. Spall, and I. J. Totterdell,2000:Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model.Nature, 408, 184-187.
    11. Cramer, W., and Coauthors,1999:Comparing global models of terrestrial net primary productivity (NPP): Overview and key results.Global Change Biology, 5, 1-15.
    12. Denman, K. L., and Coauthors,2007:Couplings between changes in the climate system and biogeochemistry.Climate Change 2007: The Physical Science Basis. Solomon et al., Eds., Cambridge University Press, Cambridge, 499-587.
    13. Dufresne, J. L.,P. Friedlingstein,M. Berthelot,L. Bopp,P. Ciais,L. Fairhead,H. Le Treut, and P. Monfray,2002:On the magnitude of positive feedback between future climate change and the carbon cycle.Geophys. Res. Lett., 29(10), doi: 10.1029/2001GL013777.
    14. Foley, J. A.,I. C. Prentice,N. Ramankutty,S. Levis,D. Pollard,S. Sitch, and A. Haxeltine,1996:An integrating biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics.Global Biogeochemical Cycles, 10, 603-628.
    15. Friedlingstein, P., and Coauthors,2006:Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison.J. Climate, 19, 3337-3353.
    16. Hagemann, S.,2002:An improved land surface parameter dataset for global and regional climate models.Max Planck Inst. Meteorol (MPI) Rep.,336, 1-21.
    17. Heimann, M., and M. Reichstein,2008:Terrestrial ecosystem carbon dynamics and climate feedbacks.Nature, 451, 289-292.
    18. Ji, J. J.,1995:A climate-vegetation interaction model: Simulating physical and biological processes at the surface.Journal of Biogeography, 22, 445-451.
    19. Jones, C. D.,M. Collins,P. M. Cox, and S. A. Spall,2001:The carbon cycle response to ENSO: A coupled climate-carbon cycle and model study.J. Climate, 14, 4113-4129.
    20. Keeling, C. D., and R. Revelle,1985:Effects of EL Nino/Southern Oscillation on the atmospheric content of carbon dioxide.Meteoritics, 20, 437-450.
    21. Keeling, C. D.,R. B. Bacastow,A. E. Bainbridge,C. A. Ekdahl, J. R.,P. R. Guenther, and L. S. Waterman,1976:Atmospheric carbon dioxide variations at Mauna Loa pbservatory, Hawaii.Tellus, 28, 538-551.
    22. Levis, S.,G. B. Bonan,M. Vertenstein, and K. W. Oleson,2004: The community land model's dynamic global vegetation model (CLM-DGVM): Technical description and user's guide. NCAR Tech. Note, NCAR/TN-459+IA, 64pp.
    23. Li, Y. C., and Y. F. Xu,2012:Uptake and storage of anthropogenic CO2 in the Pacific Ocean estimated using two modeling approaches.Adv. Atmos. Sci., 29, 795-809, doi: 10.1007/s00376-012-1170-4.
    24. Mitchell, T. D., and P. D. Jones,2005:An improved method of constructing a database of monthly climate observations and associated high-resolution grids.Inter. J. Climatol., 25, 693-712.
    25. Myneni, R. B., R. R. Nemani, and S. W. Running, 1997. Algorithm for the estimation of global land cover, LAI and FPAR based on radiative transfer models. IEEE Trans. Geosc. Remote Sens., 35, 1380-1393.
    26. Oleson, K. W., and Coauthors,2004: Technical Description of the Community Land Model (CLM). NCAR/TN-461+STR, 174pp.
    27. Qian, H. F.,R. Joseph, and N. Zeng,2008:Response of the terrestrial carbon cycle to the El Nino-Southern Oscillation.Tellus, 60B, 537-550.
    28. Qian, H. F.,R. Joseph, and N. Zeng,2009:Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the coupled carbon cycle climate model intercomparison project model projections.Global Change Biology, 16, 641-656.
    29. Saha, S., and Coauthors,2010:The NCEP climate forecast system reanalysis.Bull. Amer. Meteor. Soc., 91, 1015-1057.
    30. Taylor, K. E.,R. J. Stouffer, and G. A. Meehl,2009: A summary of the CMIP5 experiment design. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/ docs/Taylor_CMIP5_design.pdf.]
    31. Zeng, N.,2003:Glacial-interglacial atmospheric CO2 change —— The glacial burial hypothesis.Adv. Atmos. Sci., 20, 677-693.
    32. Zeng, N.,H. F. Qian,E. Munoz, and R. Iacono,2004:How strong is carbon cycle-climate feedback under global warming?Geophys. Res. Lett., 31, L20203, doi: 10.1029/2004GL020904.
    33. Zeng, N.,A. Mariotti, and P. Wetzel,2005:Terrestrial mechanisms of interannual CO2 variability.Global Biogeochemical Cycles, 19, GB1016, doi: 10.1029/2004GB002273.
    34. Zhang, X. H.,G. Y. Shi,H. Liu, and Y. Q. Yu,2000:IAP Global Ocean-Atmosphere-Land System Model. Science Press, Beijing, 252pp. (in Chinese)
  • [1] YAN Zhongwei, XIA Jiangjiang, QIAN Cheng, ZHOU Wen, 2011: Changes in Seasonal Cycle and Extremes in China during the Period 1960--2008, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 269-283.  doi: 10.1007/s00376-010-0006-3
    [2] Weile WANG, Ramakrishna NEMANI, 2016: Dynamic Responses of Atmospheric Carbon Dioxide Concentration to Global Temperature Changes between 1850 and 2010, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 247-258.  doi: 10.1007/s00376-015-5090-y
    [3] WangHuijun, Xue Feng, Bi Xunqiang, 1997: The Interannual Variability and Predictability in a Global Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 554-562.  doi: 10.1007/s00376-997-0073-2
    [4] Ji Liren, Sun Shuqing, Klaus Arpe, Lennart Benglsson, 1997: Model Study on the Interannual Variability of Asian Winter Monsoon and Its Influence, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 1-22.  doi: 10.1007/s00376-997-0039-4
    [5] Yuanyuan WANG, Zhenghui XIE, Binghao JIA, 2016: Incorporation of a Dynamic Root Distribution into CLM4.5: Evaluation of Carbon and Water Fluxes over the Amazon, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1047-1060.  doi: 10.1007/s00376-016-5226-8
    [6] ZHI Hai, WANG Panxing, DAN Li, YU Yongqiang, XU Yongfu, ZHENG Weipeng, 2009: Climate-Vegetation Interannual Variability in a Coupled Atmosphere-Ocean-Land Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 599-612.  doi: 10.1007/s00376-009-0599-6
    [7] DAN Li, JI Jinjun, ZHANG Peiqun, 2005: The Soil Moisture of China in a High Resolution Climate-Vegetation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 720-729.  doi: 10.1007/BF02918715
    [8] GUO Zhun, ZHOU Tianjun, 2015: Seasonal Variation and Physical Properties of the Cloud System over Southeastern China Derived from CloudSat Products, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 659-670.  doi: 10.1007/s00376-014-4070-y
    [9] Wang Huijun, 2000: The Interannual Variability of East Asian Monsoon and Its Relationship with SST in a Coupled Atmosphere-Ocean-Land Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 31-47.  doi: 10.1007/s00376-000-0041-6
    [10] Qian Weihong, Zhu Yafen, Xie An, Ye Qian, 1998: Seasonal and Interannual Variations of Upper Tropospheric Water Vapor Band Brightness Temperature over the Global Monsoon Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 337-345.  doi: 10.1007/s00376-998-0005-9
    [11] LIU Xiangwen, WU Tongwen, YANG Song, LI Qiaoping, CHENG Yanjie, LIANG Xiaoyun, FANG Yongjie, JIE Weihua, NIE Suping, 2014: Relationships between Interannual and Intraseasonal Variations of the Asian-Western Pacific Summer Monsoon Hindcasted by BCC_CSM1.1(m), ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1051-1064.  doi: 10.1007/s00376-014-3192-6
    [12] Hai ZHI, Rong-Hua ZHANG, Fei ZHENG, Pengfei LIN, Lanning WANG, Peng YU, 2016: Assessment of Interannual Sea Surface Salinity Variability and Its Effects on the Barrier Layer in the Equatorial Pacific Using BNU-ESM, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 339-351.  doi: 10.1007/s00376-015-5163-y
    [13] Jingjing LIANG, Zong-Liang YANG, Xitian CAI, Peirong LIN, Hui ZHENG, Qingyun BIAN, 2020: Modeling the Impacts of Nitrogen Dynamics on Regional Terrestrial Carbon and Water Cycles over China with Noah-MP-CN, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 679-695.  doi: 10.1007/s00376-020-9231-6
    [14] XU Yongfu, HUANG Yao, LI Yangchun, 2012: Summary of Recent Climate Change Studies on the Carbon and Nitrogen Cycles in the Terrestrial Ecosystem and Ocean in China, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1027-1047.  doi: 10.1007/s00376-012-1206-9
    [15] CHEN Xiao, YAN Youfang, CHENG Xuhua, QI Yiquan, 2013: Performances of Seven Datasets in Presenting the Upper Ocean Heat Content in the South China Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1331-1342.  doi: 10.1007/s00376-013-2132-1
    [16] XUE Feng, ZENG Qingcun, HUANG Ronghui, LI Chongyin, LU Riyu, ZHOU Tianjun, 2015: Recent Advances in Monsoon Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 206-229.  doi: 10.1007/s00376-014-0015-8
    [17] Wu Guoxiong, Liu Hui, Zhao Yucheng, Li Weiping, 1996: A Nine-layer Atmospheric General Circulation Model and Its Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 1-18.  doi: 10.1007/BF02657024
    [18] BAO Qing, WU Guoxiong, LIU Yimin, YANG Jing, WANG Zaizhi, ZHOU Tianjun, 2010: An Introduction to the Coupled Model FGOALS1.1-s and Its Performance in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1131-1142.  doi: 10.1007/s00376-010-9177-1
    [19] Fuqiang YANG, Li DAN, Jing PENG, Xiujing YANG, Yueyue LI, Dongdong GAO, 2019: Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 79-92.  doi: 10.1007/s00376-018-8035-4
    [20] Yuanxin LIU, Lijing CHENG, Yuying PAN, Zhetao TAN, John ABRAHAM, Bin ZHANG, Jiang ZHU, Junqiang SONG, 2022: How Well Do CMIP6 and CMIP5 Models Simulate the Climatological Seasonal Variations in Ocean Salinity?, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1650-1672.  doi: 10.1007/s00376-022-1381-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 24 July 2012
Manuscript revised: 12 January 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Earth System Model FGOALS-s2: Coupling a Dynamic Global Vegetation and Terrestrial Carbon Model with the Physical Climate System Model

    Corresponding author: BAO Qing, baoqing@mail.iap.ac.cn
  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029; 
  • 2. University of the Chinese Academy of Sciences, Beijing 100049; 
  • 3. Department of Atmospheric and Oceanic Science and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA; 
  • 4. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875
Fund Project:  This study was supported by the CAS Strategic Priority Research Program (Grant No. XDA05110303), the 973 programs (Grant Nos. 2012CB417203 and 2010CB950404), the 863 program (Grant No. 2010AA012305), and the National Science Foundation of China (Grant Nos. 41023002 and 40805038).

Abstract: Earth System Models (ESMs) are fundamental tools for understanding climate-carbon feedback. An ESM version of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) was recently developed within the IPCC AR5 Coupled Model Intercomparison Project Phase 5 (CMIP5) modeling framework, and we describe the development of this model through the coupling of a dynamic global vegetation and terrestrial carbon model with FGOALS-s2. The performance of the coupled model is evaluated as follows. The simulated global total terrestrial gross primary production (GPP) is 124.4 PgC yr-1 and net primary production (NPP) is 50.9 PgC yr-1. The entire terrestrial carbon pools contain about 2009.9 PgC, comprising 628.2 PgC and 1381.6 PgC in vegetation and soil pools, respectively. Spatially, in the tropics, the seasonal cycle of NPP and net ecosystem production (NEP) exhibits a dipole mode across the equator due to migration of the monsoon rainbelt, while the seasonal cycle is not so significant in Leaf Area Index (LAI). In the subtropics, especially in the East Asian monsoon region, the seasonal cycle is obvious due to changes in temperature and precipitation from boreal winter to summer. Vegetation productivity in the northern mid-high latitudes is too low, possibly due to low soil moisture there. On the interannual timescale, the terrestrial ecosystem shows a strong response to ENSO. The model-simulated Nio3.4 index and total terrestrial NEP are both characterized by a broad spectral peak in the range of 27 years. Further analysis indicates their correlation coefficient reaches 0.7 when NEP lags the ElNio3.4 index for about 12 months.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint