Advanced Search
Article Contents

A Global Ocean Reanalysis Product in the China Ocean Reanalysis (CORA) Project

Fund Project:

doi: 10.1007/s00376-013-2198-9

  • The first version of a global ocean reanalysis over multiple decades (1979-2008) has been completed by the National Marine Data and Information Service within the China Ocean Reanalysis (CORA) project. The global ocean model employed is based upon the ocean general circulation model of the Massachusetts Institute of Technology. A sequential data assimilation scheme within the framework of 3D variational (3DVar) analysis, called multi-grid 3DVar, is implemented in 3D space for retrieving multiple-scale observational information. Assimilated oceanic observations include sea level anomalies (SLAs) from multi-altimeters, sea surface temperatures (SSTs) from remote sensing satellites, and (i)n-situ temperature/salinity profiles. Evaluation showed that compared to the model simulation, the annual mean heat content of the global reanalysis is significantly approaching that of World Ocean Atlas 2009 (WOA09) data. The quality of the global temperature climatology was found to be comparable with the product of Simple Ocean Data Assimilation (SODA), and the major ENSO events were reconstructed. The global and Atlantic meridional overturning circulations showed some similarity as SODA, although significant differences were found to exist. The analysis of temperature and salinity in the current version has relatively larger errors at high latitudes and improvements are ongoing in an updated version. CORA was found to provide a simulation of the subsurface current in the equatorial Pacific with a correlation coefficient beyond about 0.6 compared with the Tropical Atmosphere Ocean (TAO) mooring data. The mean difference of SLAs between altimetry data and CORA was less than 0.1 m in most years.
  • 1. Atlas, R.,R. N. Hoffman,J. Ardizzone,S. M. Leidner,J. C. Jusem,D. K. Smith, and D. Gombos,2011:A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications.Bull. Amer. Meteor. Soc., 92(2), 157-174.
    2. Carton, J. A., and B. S. Giese,2008:A reanalysis of ocean climate using simple ocean data assimilation (SODA).Mon. Wea. Rev., 136, 2999-3017.
    3. Carton, J. A.,G. Chepurin, and X. Cao,2000a:A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part I: Methodology. J. Phys. Oceanogr., 30, 294-309.
    4. Carton, J. A.,G. Chepurin, and X. Cao,2000b:A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part II: Results. J. Phys. Oceanogr., 30, 311-326.
    5. Derber, J., and A. Rosati,1989:A global oceanic data assimilation system.J. Phys. Oceanogr., 19, 1333-1347.
    6. Dong, S. F.,S. Garzoli,M. Baringer,C. Meinen,G. Goni,2009:Interannual variations in the Atlantic meridional overturning circulation and its relationship with the net northward heat transport in the South Atlantic.Geophys. Res. Lett., 36, L20606, doi: 10.1029/2009GL039356.
    7. Dursku, S. M.,S. M. Glenn, and D. B. Haidvogel,2004:Vertical mixing schemes in the coastal ocean: Comparison of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile parameterization.J. Geophys. Res., 109(C01015), 1029-1051.
    8. Han, G. J and Coauthors,2011:A regional ocean reanalysis system for coastal waters of china and adjacent seas.Adv. Atmos. Sci., 28(3), 682-690, doi: 10.1007/s00376-010-9184-2.
    9. He, Z. J.,G. J. Han,W. Li,D. Li,X. F. Zhang,X. D. Wang, and X. R. Wu,2010: Experiments on assimilating of satellite data in the China seas and adjacent seas. (P)eriodical of Ocean University of China, 40(9), 1-7. (in Chinese)
    10. Large, W. G.,J. C. McWilliams, and S. C. Doney,1994:Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization.Rev. Geophys., 32, 363-403.
    11. Li, W.,Y. F. Xie,Z. J. He,K. X. Liu,G. J. Han,J. R. Ma, and D. Li,2008:Application of the multi-grid data assimilation scheme to the China Seas' temperature forecast.J. Atmos. Oceanic. Technol., 25(11), 2106-2116.
    12. Li, W.,Y. F. Xie,S. M. Deng, and Q. Wang,2010:Application of the multigrid method to the two-dimensional doppler radar radial velocity data assimilation.J. Atmos. Oceanic. Technol., 27(2), 319-332.
    13. Marshall, J.,C. Hill,L. Perelman, and A. Adcroft,1997:Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modelling.J. Geophys. Res., 102(C3), 5733-5753.
    14. Reynolds, R. W.,T. M. Smith,C. Liu,D. B. Chelton,K. S. Casey, and M. G. Schlax,2007:Daily high-resolution blended analyses for sea surface temperature.J. Climate, 20(22), 5473-5496.
    15. Shu, Y. Q.,J. Zhu,D. X. Wang,C. X. Yan, and X. J. Xiao,2009:Performance of four sea surface temperature assimilation schemes in the South China Sea.Continental Shelf Research, 29, 1489-1501.
    16. Shu, Y. Q.,J. Zhu, and D. X. Wang,2011:Assimilating remote sensing and in situ observations into a coastal model of northern South China Sea using ensemble Kalman filter.Continental Shelf Research, 31, S24-S36.
    17. Stammer, D., and E. P. Chassignet,2000:Ocean state estimation and prediction in support of oceanographic research.Oceanography, 13, 51-56.
    18. Troccoli, A., and Coauthors,2002:Salinity adjustments in the presence of temperature data assimilation.Mon. Wea. Rev., 130, 89-102.
    19. Wang, D. X.,Y. H. Qin,X. J. Xiao,Z. Q. Zhang, and F. M. Wu,2012a:Preliminary results of a new global ocean reanalysis.Chinese Science Bulletin, 57, 3509-3517.
    20. Wang, D. X.,Y. H. Qin,X. J. Xiao,Z. Q. Zhang, and X. Y. Wu,2012b:El Ni?o and El Ni?o Modoki variability based on a new ocean reanalysis.Ocean Dynamics, 62, 1311-1322.
    21. Wong, A. P. S.,G. C. Johnson, and W. B. Owens,2003:Delayed-mode calibration of autonomous CTD profiling float salinity data by S-θ climatology.J. Atmos. Oceanic Technol., 20, 308-318.
    22. Xiao, X. J.,D. X. Wang, and J. J. Xu,2006:The assimilation experiment in the southwestern South China Sea in summer 2000.Chinese Science Bulletin, 51, doi: 10.1007/s11434-006-9031-4.
    23. Xiao, X. J.,D. X. Wang,C. X. Yan, and J. Zhu,2008:Evaluation of a 3DVAR system for the South China Sea.Progress in Natural Science, 18, 547-554.
    24. Xie, Y.,S. Koch,J. Mcginley,S. Albers,P. E. Bieringer,M. Wolfson, and M. Chan,2011:A space-time multiscale analysis system: a sequential variational analysis approach.Mon. Wea. Rev., 139, 1224-1240.
    25. Yan, C. X.,J. Zhu, and G. Q. Zhou,2004:The roles of vertical correlation of the background covariance and T-S relation in estimation temperature and salinity profiles from surface dynamic height.J. Geophys. Res., 109, doi: 10. 1029/2003JC002224.
    26. Yelland , M., and P. K. Taylor,1996:Wind stress measurements from the open ocean.J. Phys. Oceanogr., 26, 541-558.
    27. Zhu, J., and C. X. Yan,2006:Nonlinear balance constraint in 3DVAR.Sci. China (D), 49, 331-336.
    28. Zhu, J.,G. Q. Zhou,C. X. Yan, and X. B. You,2006:A three-dimensional variational ocean data assimilation system: Scheme and preliminary results.Sci. China (D), 49(12), 1212-1222.
  • [1] HU Ruijin, WEI Meng, 2013: Intraseasonal Oscillation in Global Ocean Temperature Inferred from Argo, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 29-40.  doi: 10.1007/s00376-012-2045-4
    [2] HAN Guijun, LI Wei, ZHANG Xuefeng, WANG Xidong, WU Xinrong, FU Hongli, ZHANG Xiaoshuang, ZHANG Lianxin, and LI Dong, 2013: A new version of regional ocean reanalysis for coastal waters of China and adjacent seas, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 974-982.  doi: 10.1007/s00376-012-2195-4
    [3] HAN Guijun, LI Wei, ZHANG Xuefeng, LI Dong, HE Zhongjie, WANG Xidong, WU Xinrong, YU Ting, MA Jirui, 2011: A Regional Ocean Reanalysis System for Coastal Waters of China and Adjacent Seas, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 682-690.  doi: 10.1007/s00376-010-9184-2
    [4] Xiang LI, Tiejun LING, Yunfei ZHANG, Qian ZHOU, 2018: A 31-year Global Diurnal Sea Surface Temperature Dataset Created by an Ocean Mixed-Layer Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1443-1454.  doi: 10.1007/s00376-018-8016-7
    [5] Lijing CHENG, Jiang ZHU, 2018: 2017 was the Warmest Year on Record for the Global Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 261-263.  doi: 10.1007/s00376-018-8011-z
    [6] Lijing CHENG, Jiang ZHU, John ABRAHAM, Kevin E. TRENBERTH, John T. FASULLO, Bin ZHANG, Fujiang YU, Liying WAN, Xingrong CHEN, Xiangzhou SONG, 2019: 2018 Continues Record Global Ocean Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 249-252.  doi: 10.1007/s00376-019-8276-x
    [7] LI Lijuan, LIN Pengfei, YU Yongqiang, WANG Bin, ZHOU Tianjun, LIU Li, LIU Jiping, BAO Qing, XU Shiming, HUANG Wenyu, XIA Kun, PU Ye, DONG Li, SHEN Si, LIU Yimin, HU Ning, LIU Mimi, SUN Wenqi, SHI Xiangjun, ZHENG Weipeng, WU Bo, SONG Mirong, LIU Hailong, ZHANG Xuehong, WU Guoxiong, XUE Wei, HUANG Xiaomeng, YANG Guangwen, SONG Zhenya, and QIAO Fangli, 2013: The Flexible Global Ocean-Atmosphere-Land System Model, Grid-point Version 2: FGOALS-g2, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 543-560.  doi: 10.1007/s00376-012-2140-6
    [8] XU Yongfu, LI Yangchun, and CHU Min, 2013: A Global Ocean Biogeochemistry General Circulation Model and its Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 922-939.  doi: 10.1007/s00376-012-2162-0
    [9] YU Yongqiang, ZHANG Xuehong, GUO Yufu, 2004: Global Coupled Ocean-Atmosphere General Circulation Models in LASG/IAP, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 444-455.  doi: 10.1007/BF02915571
    [10] Yueliang CHEN, Changxiang YAN, Jiang ZHU, 2018: Assimilation of Sea Surface Temperature in a Global Hybrid Coordinate Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1291-1304.  doi: 10.1007/s00376-018-7284-6
    [11] XU Yongfu, LI Yangchun, 2009: Estimates of Anthropogenic CO2 Uptake in a Global Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 265-274.  doi: 10.1007/s00376-009-0265-z
    [12] Zhang Ronghua, Zeng Qingcun, Zhou Guangqing, Liang Xinzhong, 1995: A Coupled General Circulation Model for the Tropical Pacific Ocean and Global Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 127-142.  doi: 10.1007/BF02656827
    [13] Fu Congbin, Dong Dongfeng, Ralph Slutz, Joseph Fletcher, 1988: EL NINO/SOUTHERN OSCILLATION SIGNALS IN THE GLOBAL TROPICAL OCEAN, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 35-46.  doi: 10.1007/BF02657344
    [14] Yiyong LUO, Jian LU, Fukai LIU, Xiuquan WAN, 2016: The Positive Indian Ocean Dipole-like Response in the Tropical Indian Ocean to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 476-488.  doi: 10.1007/s00376-015-5027-5
    [15] Boyin HUANG, Vikram M. MEHTA, 2010: Influences of Freshwater from Major Rivers on Global Ocean Circulation and Temperatures in the MIT Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 455-468.  doi: 10.1007/s00376-009-9022-6
    [16] ZHANG Ziyin, GUO Wenli, GONG Daoyi, Seong-Joong KIM, 2013: Evaluation of the Twentieth Century Reanalysis Dataset in Describing East Asian Winter Monsoon Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1645-1652.  doi: 10.1007/s00376-012-2226-1
    [17] BAO Qing, LIN Pengfei, ZHOU Tianjun, LIU Yimin, YU Yongqiang, WU Guoxiong, HE Bian, HE Jie, LI Lijuan, LI Jiandong, LI Yangchun, LIU Hailong, QIAO Fangli, SONG Zhenya, WANG Bin, WANG Jun, WANG Pengfei, WANG Xiaocong, WANG Zaizhi, WU Bo, WU Tongwen, XU Yongfu, YU Haiyang, ZHAO Wei, ZHENG Weipeng, and ZHOU Linjiong, , 2013: The Flexible Global Ocean-Atmosphere-Land System Model, Spectral Version 2: FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 561-576.  doi: 10.1007/s00376-012-2113-9
    [18] YANG Jing, BAO Qing, WANG Xiaocong, 2013: Intensified Eastward and Northward Propagation of Tropical Intraseasonal Oscillation over the Equatorial Indian Ocean in a Global Warming Scenario, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 167-174.  doi: 10.1007/s00376-012-1260-3
    [19] LIU Juan, WANG Bin, LIU Hailong, YU Yongqiang, 2008: A New Global Four-Dimensional Variational Ocean Data Assimilation System and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 680-691.  doi: 10.1007/s00376-008-0680-6
    [20] Bao Ning, Zhang Xuehong, 1991: Effect of Ocean Thermal Diffusivity on Global Warming Induced by Increasing Atmospheric CO2, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 421-430.  doi: 10.1007/BF02919265

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 13 August 2012
Manuscript revised: 30 January 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Global Ocean Reanalysis Product in the China Ocean Reanalysis (CORA) Project

  • 1. Key Laboratory of Marine Environmental Information Technology, State Oceanic Administration, National Marine Data and Information Service, Tianjin 300171
Fund Project:  This research was sponsored by the National Basic Research Program (Grant No. 2013 CB430304), National Natural Science Foundation of China (Grant Nos. 41030854, 41106005, 41176003, and 41206178), and National High-Tech RD Program of China (Grant No. 2013AA09A505). The temperature and salinity in-situ proles were obtained from WOD09, maintained by NODC, USA, the GTSPP project and Argo global data center (Coriolis Data Center, ftp://ftp.ifremer.fr). The multi-satellite altimeter SLA data were from http://www.jason.oceanobs.com, the TAO mooring current data from http://www.pmel.noaa.gov/tao, the Reynolds SST dataset ftp://eclipse.ncdc.noaa.gov/pub/OI-daily/NetCDF/, from the NCEP reanalysis from ftp://ftp.cdc. noaa.gov/pub/datasets/necp.reanalysis2, the CCMP ocean surface wind data from PO. DAAC (http://podaac.jpl.nasa.gov/DATA CATALOG/ccmpinfo.html), and the SO-DA reanalysis from http://dsrs.atmos.umd.edu.

Abstract: The first version of a global ocean reanalysis over multiple decades (1979-2008) has been completed by the National Marine Data and Information Service within the China Ocean Reanalysis (CORA) project. The global ocean model employed is based upon the ocean general circulation model of the Massachusetts Institute of Technology. A sequential data assimilation scheme within the framework of 3D variational (3DVar) analysis, called multi-grid 3DVar, is implemented in 3D space for retrieving multiple-scale observational information. Assimilated oceanic observations include sea level anomalies (SLAs) from multi-altimeters, sea surface temperatures (SSTs) from remote sensing satellites, and (i)n-situ temperature/salinity profiles. Evaluation showed that compared to the model simulation, the annual mean heat content of the global reanalysis is significantly approaching that of World Ocean Atlas 2009 (WOA09) data. The quality of the global temperature climatology was found to be comparable with the product of Simple Ocean Data Assimilation (SODA), and the major ENSO events were reconstructed. The global and Atlantic meridional overturning circulations showed some similarity as SODA, although significant differences were found to exist. The analysis of temperature and salinity in the current version has relatively larger errors at high latitudes and improvements are ongoing in an updated version. CORA was found to provide a simulation of the subsurface current in the equatorial Pacific with a correlation coefficient beyond about 0.6 compared with the Tropical Atmosphere Ocean (TAO) mooring data. The mean difference of SLAs between altimetry data and CORA was less than 0.1 m in most years.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint