Advanced Search
Article Contents

Examination of the Quality of GOSAT/CAI Cloud Flag Data over Beijing Using Ground-based Cloud Data

Fund Project:

doi: 10.1007/s00376-013-2267-0

  • It has been several years since the Greenhouse Gases Observing Satellite (GOSAT) began to observe the distribution of CO2 and CH4 over the globe from space. Results from Thermal and Near-infrared Sensor for Carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) cloud screening are necessary for the retrieval of CO2 and CH4 gas concentrations for GOSAT TANSO-Fourier Transform Spectrometer (FTS) observations. In this study, TANSO-CAI cloud flag data were compared with ground-based cloud data collected by an all-sky imager (ASI) over Beijing from June 2009 to May 2012 to examine the data quality. The results showed that the CAI has an obvious cloudy tendency bias over Beijing, especially in winter. The main reason might be that heavy aerosols in the sky are incorrectly determined as cloudy pixels by the CAI algorithm. Results also showed that the CAI algorithm sometimes neglects some high thin cirrus cloud over this area.
  • 1. Ackerman, S. A.,K. I. Strabala,W. P. Menzel,R. A. Frey,C. C. Moeller, and L. E. Gumley,1998:Discriminating clear-sky from clouds with MODIS.J. Geophys. Res., 103, 32141-32157.
    2. Bousquet, P.,P. Peylin,P. Ciais,C. L. Quere,P. Friedlingstein, and P. P. Tans,2000:Regional changes in carbon dioxide fluxes of land and oceans since 1980.Science, 290(5495), 1342-1346.
    3. Engelen, R. J.,A. S. Denning,K. R. Gurney, and G. L. Stephens,2001:Global observations of the carbon budget: 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras.J. Geophys. Res., 106(D17), 20055-20068.
    4. Fan, S.,M. Gloor,J. Mahlman,S. Pacala,J. Sarmiento,T. Takahashi, and A. P. Tans,1998:A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models.Science, 282(5388), 442-446.
    5. Guan, J. X., and C. C. Li,2010:Spatial distributions and changes of aerosol optical depth over eastern and central china.Acta Scientiarum Naturalium Universitatis Pekinensis, 46, 185-191. (in Chinese)
    6. Huo, J., and D. Lu,2009:Cloud determination of all-sky images under low-visibility conditions.J. Atmos. Ocean. Technol., 26, 2172-2181.
    7. Ishida, H., and T. Y. Nakjima,2009:Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager.J. Geophys. Res., 114, D07206, doi: 07210.01029/02008JD010710.
    8. Ishida, H., and T. Y. Nakjima,2011:Investigation of GOSAT TANSO-CAI cloud screening ability through an intersatellite comparison.J. Appl. Meteor. Climatol., 50, 1571-1586.
    9. Liu, H.,W. Zhu,S. Yi,W. Li,L. Chen, and L. Bai,2003:Climatic analysis of the cloud over China.Acta Meteorologica Sinica, 61, 466-473. (in Chinese)
    10. Min, M.,P. Wang, and X. Zong,2011:Cirrus cloud distribution over China from spaceborne lidar observations.Climatic and Environmental Research, 16, 301-309. (in Chinese)
    11. Sabburg, J., and C. Long,2004:Improved sky imaging for studies of enhanced UV irradiance.Atmos. Chem. Phys, 4, 2543-2552.
    12. Treut, L.,R. Somerville,U. Cubasch,Y. Ding,C. Mauritzen,A. Mokssit,T. Peterson, and M. Prather,2007: Historical overview of climate change. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 996pp.
    13. Xu, X., J. Qiu, S. Niu, and L. Tang, 2009. Optical depth of the atmospheric aerosol at 12 stations in China over the past 45 years. Acta Scientiae Circumstantiae, 29, 488-495. (in Chinese)
    14. Yan, L. B., and X. D. Liu,2009:Seasonal variation of atmospheric aerosol and its relation to cloud faction over Beijing-Tianjin-Hebei region.Chinese Research of Environmental Sciences, 22, 924-931. (in Chinese)
    15. Zhang, W.,D. Lu, and Y. Chang,2007:A feasibility study of cloud base height remote sensing by simulating ground-based thermal infrared brightness temperature measurements.Chinese Journal of Geophysics, 50, 339-350. (in Chinese)
  • [1] Yaodeng CHEN, Ruizhi ZHANG, Deming MENG, Jinzhong MIN, Lina ZHANG, 2016: Variational Assimilation of Satellite Cloud Water/Ice Path and Microphysics Scheme Sensitivity to the Assimilation of a Rainfall Case, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1158-1170.  doi: 10.1007/s00376-016-6004-3
    [2] Jinqiang ZHANG, Xiang'ao XIA, Hongbin CHEN, 2017: A Comparison of Cloud Layers from Ground and Satellite Active Remote Sensing at the Southern Great Plains ARM Site, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 347-359.  doi: 10.1007/s00376-016-6030-1
    [3] MA Jianzhong, GUO Xueliang, ZHAO Chunsheng, ZHANG Yijun, HU Zhijin, 2007: Recent Progress in Cloud Physics Research in China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1121-1137.  doi: 10.1007/s00376-007-1121-7
    [4] GUO Zhun, ZHOU Tianjun, 2015: Seasonal Variation and Physical Properties of the Cloud System over Southeastern China Derived from CloudSat Products, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 659-670.  doi: 10.1007/s00376-014-4070-y
    [5] Liping LIU, Jiafeng ZHENG, Jingya WU, 2017: A Ka-band Solid-state Transmitter Cloud Radar and Data Merging Algorithm for Its Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 545-558.  doi: 10.1007/s00376-016-6044-8
    [6] ZHONG Lingzhi, LIU Liping, DENG Min, ZHOU Xiuji, 2012: Retrieving Microphysical Properties and Air Motion of Cirrus Clouds Based on the Doppler Moments Method Using Cloud Radar, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 611-622.  doi: 10.1007/s00376-011-0112-x
    [7] WANG Zhili, ZHANG Hua, SHEN Xueshun, Sunling GONG, ZHANG Xiaoye, 2010: Modeling Study of Aerosol Indirect Effects on Global Climate with an AGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1064-1077.  doi: 10.1007/s00376-010-9120-5
    [8] Zeinab SALAH, Ahmed SHALABY, Allison L. STEINER, Ashraf S. ZAKEY, Ritesh GAUTAM, Mohamed M. ABDEL WAHAB, 2018: Study of Aerosol Direct and Indirect Effects and Auto-conversion Processes over the West African Monsoon Region Using a Regional Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 182-194.  doi: 10.1007/s00376-017-7077-3
    [9] Yunji ZHANG, Eugene E. CLOTHIAUX, David J. STENSRUD, 2022: Correlation Structures between Satellite All-Sky Infrared Brightness Temperatures and the Atmospheric State at Storm Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 714-732.  doi: 10.1007/s00376-021-0352-3
    [10] Jun LI, Alan J. GEER, Kozo OKAMOTO, Jason A. OTKIN, Zhiquan LIU, Wei HAN, Pei WANG, 2022: Satellite All-sky Infrared Radiance Assimilation: Recent Progress and Future Perspectives, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 9-21.  doi: 10.1007/s00376-021-1088-9
    [11] Lei ZHU, Zhiyong MENG, Yonghui WENG, Fuqing ZHANG, 2022: Assimilation of All-sky Geostationary Satellite Infrared Radiances for Convection-Permitting Initialization and Prediction of Hurricane Joaquin (2015), ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1859-1872.  doi: 10.1007/s00376-022-2015-4
    [12] Jinqiang ZHANG, Hongbin CHEN, Xiang'ao XIA, Wei-Chyung WANG, 2016: Dynamic and Thermodynamic Features of Low and Middle Clouds Derived from Atmospheric Radiation Measurement Program Mobile Facility Radiosonde Data at Shouxian, China, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 21-33.  doi: 10.1007/s00376-015-5032-8
    [13] WANG Linlin, GAO Zhiqiu, MIAO Shiguang, GUO Xiaofeng, SUN Ting, Maofeng LIU, Dan LI, 2015: Contrasting Characteristics of the Surface Energy Balance between the Urban and Rural Areas of Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 505-514.  doi: 10.1007/s00376-014-3222-4
    [14] GUO Zhun, ZHOU Tianjun, 2013: Why Does FGOALS-gl Reproduce a Weak Medieval Warm Period But a Reasonable Little Ice Age and 20th Century Warming?, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1758-1770.  doi: 10.1007/s00376-013-2227-8
    [15] HUANG Jianping, ZHANG Wu, ZUO Jinqing, BI Jianrong, SHI Jinsen, WANG Xin, CHANG Zhoulin, HUANG Zhongwei, YANG Su, ZHANG Beidou, WANG Guoyin, FENG Guanghong, YUAN Jiuyi, ZHANG Lei, ZUO Hongchao, WANG Shigong, FU Congbin, CHOU Jifan, 2008: An Overview of the Semi-arid Climate and Environment Research Observatory over the Loess Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 906-921.  doi: 10.1007/s00376-008-0906-7
    [16] Wang Pucai, Jacqueline Lenoble, 1996: Influence of Clouds on UV Irradiance at Ground Level and Backscattered Exittance, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 217-228.  doi: 10.1007/BF02656864
    [17] HUANG Jianping, JI Mingxia, Kaz HIGUCHI, Amir SHABBAR, 2006: Temporal Structures of the North Atlantic Oscillation and Its Impact on the Regional Climate Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 23-32.  doi: 10.1007/s00376-006-0003-8
    [18] HUO Juan, LU Daren, 2010: Preliminary Retrieval of Aerosol Optical Depth from All-sky Images, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 421-426.  doi: 10.1007/s00376-009-8216-2
    [19] Ling WANG, Xiuqing HU, Na XU, Lin CHEN, 2021: Water Vapor Retrievals from Near-infrared Channels of the Advanced Medium Resolution Spectral Imager Instrument onboard the Fengyun-3D Satellite, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1351-1366.  doi: 10.1007/s00376-020-0174-8
    [20] Xi WANG, Zheng GUO, Yipeng HUANG, Hongjie FAN, Wanbiao LI, 2017: A Cloud Detection Scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT), ADVANCES IN ATMOSPHERIC SCIENCES, 34, 16-25.  doi: 10.1007/s00376-016-6033-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 25 October 2012
Manuscript revised: 20 February 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Examination of the Quality of GOSAT/CAI Cloud Flag Data over Beijing Using Ground-based Cloud Data

    Corresponding author: HUO Juan; 
  • 1. Key Laboratory for Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Fund Project:  The authors acknowledge support from the Strategic Pilot Science and Technology project of the Chinese Academy of Sciences (Grant No. XDA05040200) and the National Natural Science Foundation of China (Grant No. 41275040).

Abstract: It has been several years since the Greenhouse Gases Observing Satellite (GOSAT) began to observe the distribution of CO2 and CH4 over the globe from space. Results from Thermal and Near-infrared Sensor for Carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) cloud screening are necessary for the retrieval of CO2 and CH4 gas concentrations for GOSAT TANSO-Fourier Transform Spectrometer (FTS) observations. In this study, TANSO-CAI cloud flag data were compared with ground-based cloud data collected by an all-sky imager (ASI) over Beijing from June 2009 to May 2012 to examine the data quality. The results showed that the CAI has an obvious cloudy tendency bias over Beijing, especially in winter. The main reason might be that heavy aerosols in the sky are incorrectly determined as cloudy pixels by the CAI algorithm. Results also showed that the CAI algorithm sometimes neglects some high thin cirrus cloud over this area.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint