Advanced Search
Article Contents

Two Types of El Nio-related Southern Oscillation and Their Different Impacts on Global Land Precipitation

Fund Project:

doi: 10.1007/s00376-013-2272-3

  • The contrast between the eastern and central Pacific (EP- and CP-) El Nio is observed in the different responses of zonal and vertical circulation in the tropics. To measure the different responses of the atmospheric circulation to the two types of El Ni, an eastern and a central Pacific southern oscillation index (EP- and CP-SOI) are defined based on the air-sea coupled relationship between eddy sea level pressure and sea surface temperature. Analyses suggest that while the EP-SOI exhibits variability on an interannual (27-yr) time scale, decadal (1015-yr) variations in the CP-SOI are more dominant; both are strongly coupled with their respective EP- and CP-El Nio patterns. Composite analysis suggests that, during EP-ENSO, the Walker circulation exhibits a dipole structure in the lower-level (850 hPa) and upper-level (200 hPa) velocity potential anomalies and exhibits a signal cell over the Pacific. In the case of CP-ENSO, however, the Walker circulation shows a tripole structure and exhibits double cells over the Pacific. In addition, the two types of ENSO events show opposite impacts on global land precipitation in the boreal winter and spring seasons. For example, seasonal precipitation across mainland China exhibits an opposite relationship with the EP- and CP-ENSO during winter and spring, but the rainfall over the lower reaches of the Yangtze River and South China shows an opposite relationship during the rest of the seasons. Therefore, the different relationships between rainfall and EP- and CP-ENSO should be carefully considered when predicting seasonal rainfall in the East Asian monsoon regions.
  • 1. Allan, R., and T. Ansell,2006:A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004. J. Climate, 19(22), 5816-5842, doi: 10.1175/jcli3937.1.
    2. Ashok, K.,S. K. Behera,S. A. Rao,H. Weng, and T. Yamagata,2007:El Ni?o Modoki and its possible teleconnection.J. Geophys. Res., 112, C11007, doi: 10.1029/2006JC003798.
    3. Ashok, K.,C. Y. Tam, and W. J. Lee,2009:ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter.Geophys. Res. Lett., 36, L12705, doi: 10.1029/2009GL038847.
    4. Bao, M., and R. Han,2009:Delayed impacts of the El Ni?o episodes in the central Pacific on the summertime climate anomalies of eastern China in 2003 and 2007.Adv. Atmos. Sci., 26, 553-563, doi: 10.1007/s00376-009-0553-7.
    5. Bjerknes, J.,1969:Atmospheric teleconnections from the equatorial Pacific.Mon. Wea. Rev, 97(3), 163-172, doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2. 3.CO;2.
    6. Cai, W., and T. Cowan,2009:La Ni?a Modoki impacts Australia autumn rainfall variability.Geophys. Res. Lett., 36, L12805, doi: 10.1029/2009GL037885.
    7. Cai, W.,P. van Rensch,T. Cowan, and H. H. Hendon,2011:Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall.J. Climate, 24, 3910-3923, doi: 10.1175/2011jcli4129.1.
    8. Chan, J. C. L.,1985:Tropical cyclone activity in the Northwest Pacific in relation to the El Ni?o/Southern Oscillation phenomenon.Mon. Wea. Rev, 113, 599-606, doi: 10.1175/1520-0493(1985)113<0599: TCAITN>2.0.CO;2.
    9. Chen, G., and C.-Y. Tam,2010:Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific.Geophys. Res. Lett.,37, L01803, doi: 10.1029/2009GL041708.
    10. Chen, M.,P. Xie,J. E. Janowiak, and P. A. Arkin,2002:Global land precipitation: A 50-yr monthly analysis based on gauge observations.Journal of Hydrometeorology, 3(3), 249-266, doi: 10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.
    11. Chen, W.,S. Yang, and R.-H. Huang,2005:Relationship between stationary planetary wave activity and the East Asian winter monsoon.J. Geophys. Res., 110, D14110, doi: 10.1029/2004JD005669.
    12. Feng, J., and J. Li,2011:Influence of El Ni?o Modoki on spring rainfall over South China.J. Geophys. Res., 116, D13102, doi: 10.1029/2010JD015160.
    13. Feng, J.,W. Chen,C. Y. Tam, and W. Zhou,2010a:Different impacts of El Ni?o and El Ni?o Modoki on China rainfall in the decaying phases.Int. J. Climatol., 31, 2091-2101, doi: 10.1002/joc.2217.
    14. Feng, J.,L. Wang,W. Chen,S. K. Fong, and K. C. Leong,2010b:Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter.J. Geophys. Res., 115, D24122, doi: 10.1029/2010JD014761.
    15. Hoerling, M. P., and A. Kumar,2002:Atmospheric response patterns associated with tropical forcing.J. Climate, 15, 2184-2203, doi: 10.1175/1520-0442(2002) 015<2184:ARPAWT>2.0.CO;2.
    16. Hu, Z.-Z.,A. Kumar,B. Jha,W. Wang,B. Huang, and B. Huang,2011:An analysis of warm pool and cold tongue El Ni?os: Air-sea coupling processes, global influences, and recent trends.Climate Dyn., doi: 10.1007/s00382-011-1224-9.
    17. Inoue, T., and J. Matsumoto,2004:A comparison of summer sea level pressure over East Eurasia between NCEP-NCAR reanalysis and ERA-40 for the period 1960-99. J. Meteor. Soc. Japan, 82(3), 951-958.
    18. Jacobs, S. S., and J. C. Comiso,1993:A recent sea-ice retreat west of the Antarctic Peninsula.Geophys. Res. Lett., 20(12), 1171-1174, doi: 10.1029/93GL01200.
    19. Jacobs, S. S., and J. C. Comiso,1997:Climate variability in the Amundsen and Bellingshausen Seas.J. Climate, 10, 697-709, doi: 10.1175/1520-0442(1997)010 <0697:CVITAA>2.0.CO;2.
    20. Kalnay, E., and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull. Amer. Meteor. Soc., 77, 437-471, doi: 10.1175/1520-0477(1996)077<0437: TNY RP>2.0.CO;2.
    21. Kao, H.-Y., and J.-Y. Yu,2009:Contrasting Eastern-Pacific and central-Pacific types of ENSO.J. Climate, 22, 615-632, doi: 10.1175/2008JCLI2309.1.
    22. Kug, J.-S.,F.-F. Jin, and S.-I. An,2009:Two types of El Ni?o events: Cold tongue El Ni?o and warm pool El Ni?o.J. Climate, 22, 1499-1515, doi: 10.1175/2008 JCLI2624.1.
    23. Kwok, R., and J. C. Comiso,2002:Southern ocean climate and sea ice anomalies associated with the Southern Oscillation.J. Climate, 15, 487-501, doi: 10.1175/15200442(2002)015<0487: SOCASI>2.0.CO;2.
    24. Larkin, N. K., and D. E. Harrison,2005:On the definition of El Ni?o and associated seasonal average U.S. weather anomalies.Geophys. Res. Lett., 32, L13705, doi: 10.1029/2005GL022738.
    25. Lee, T., and M. J. McPhaden,2010:Increasing intensity of El Ni?o in the central-equatorial Pacific.Geophys. Res. Lett., 37, L14603, doi: 10.1029/2010GL044007.
    26. Livezey, R. E., and W. Y. Chen,1983:Statistical field significance and its determination by Monte Carlo techniques.Mon. Wea. Rev., 111, 46-59.
    27. McPhaden, M. J.,T. Lee, and D. McClurg,2011:El Ni?o and its relationship to changing background conditions in the tropical Pacific Ocean.Geophys. Res. Lett., 38, L15709, doi: 10.1029/2011GL048275.
    28. Mo, K. C.,2010:Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States.J. Climate, 23, 3639-3656, doi: 10.1175/2010jcli3553.1.
    29. Ratnam, J. V.,S. K. Behera,Y. Masumoto,K. Takahashi, and T. Yamagata,2010:Pacific Ocean origin for the 2009 Indian summer monsoon failure.Geophys. Res. Lett., 37, L07807, doi: 10.1029/2010GL042798.
    30. Rayer, N. A.,D. E. Parker,E. B. Horton, C. K. Folland , L. V. Alexand er,D. P. Rowell,E. C. Kent, and A. Kaplan,2003:Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century.J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD002670.
    31. Ren, H.-L., and F.-F. Jin,2011:Ni?o indices for two types of ENSO.Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010GL046031.
    32. Ropelewski, C. F., and M. S. Halpert,1987:Global and regional scale precipitation patterns associated with the El Ni?o/Southern Oscillation.Mon. Wea. Rev, 115(8), 1606-1626, doi:10.1175/1520-0493(1987)115<1606:garspp>2.0.co;2.
    33. Ropelewski, C. F., and M. S. Halpert,1989:Precipitation patterns associated with the high index phase of the Southern Oscillation.J. Climate, 2(3), 268-284, doi: 10.1175/1520-0442(1989)002<0268:ppawth>2.0.co;2.
    34. Ropelewski, C. F., and P. D. Jones,1987:An extension of the Tahiti-Darwin Southern Oscillation index.Mon. Wea. Rev., 115(9), 2161-2165, doi: 10.1175/1520-0493(1987)115<2161:AEOTTS>2.0.co;2.
    35. Simmonds, I., and T. H. Jacka,1995:Relationships between the interannual variability of Antarctic sea ice and the Southern Oscillation.J. Climate, 8(3), 637-647, doi: 10.1175/1520-0442(1995)008<0637:RBTIVO>2.0.co;2.
    36. Tanaka, H. L.,N. Ishizaki, and A. Kitoh,2004:Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere.Tellus A, 56, 250-269, doi: 10.1111/j.1600-0870.2004.00049.x
    37. Taschetto, A. S., and M. H. England,2009:El Ni?o Modoki impacts on Australian rainfall.J. Climate, 22, 3167-3174, doi: 10.1175/2008jcli2589.1.
    38. Torrence, C., and G. P. Compo,1998:A practical guide to wavelet analysis.Bull. Amer. Meteor. Soc., 79(1), 61-78.
    39. Trenberth, K. E.,1976:Spatial and temporal variations of the Southern Oscillation.Quart. J. Roy. Meteor. Soc., 102, 639-653, doi: 10.1002/qj.49710243310.
    40. Trenberth, K. E.,1984:Signal versus noise in the Southern Oscillation.Mon. Wea. Rev, 112, 326-332, doi: 10.1175/1520-0493(1984)112<0326:SVNITS> 2.0.co;2.
    41. Trenberth, K. E., and T. J. Hoar,1996:The 1990-1995 El Ni?o-Southern Oscillation event: Longest on record.Geophys. Res. Lett., 23, 57-60, doi: 10.1029/95GL03602.
    42. van Loon, H., and D. J. Shea,1985:The Southern Oscillation. Part IV: The precursors south of 15°S to the extremes of the oscillation.Mon. Wea. Rev, 113, 2063-2074, doi: 10.1175/1520-0493(1985)113<2063:TSOPIT>2.0.CO;2.
    43. van Loon, H., and D. J. Shea,1987:The Southern Oscillation. Part VI: Anomalies of sea level pressure on the Southern Hemisphere and of Pacific sea surface temperature during the development of a warm event.Mon. Wea. Rev, 115(2), 370-379, doi: 10.1175/1520-0493(1987)115<0370:TSOPVA>2.0.CO;2.
    44. Wang, B., and Q. Ding,2006:Changes in global monsoon precipitation over the past 56 years.Geophys. Res. Lett., 33, L06711, doi: 10.1029/2005GL025347.
    45. Wang, B., and Q. Ding,2008:Global monsoon: Dominant mode of annual variation in the tropics.Dyn. Atmos. Oceans, 44, 165-183, doi: 10.1016/j.dynatm oce.2007.05.002.
    46. Wang, C., and X. Wang,2013:El Ni?o Modoki I and II classifying by different impacts of rainfall in southern china and typhoon tracks.J. Climate, 26(4), 1322-1338, doi: 10.1175/jcli-d-12-00107.1.
    47. Weng, H.,K. Ashok,S. K. Behera,S. A. Rao, and T. Yamagata,2007:Impacts of recent El Ni?o Modoki on dry/wet conditions in the Pacific rim during boreal summer.Climate Dyn., 29, 113-129, doi: 10.1007/s00382-007-0234-0.
    48. Weng, H.,S. K. Behera, and T. Yamagata,2009:Anomalous winter climate conditions in the Pacific rim during recent El Ni?o Modoki and El Ni?o events.Climate Dyn., 32, 663-674, doi: 10.1007/s00382-008-0394-6.
    49. Weng, H.,G. Wu,Y. Liu,S. K. Behera, and T. Yamagata,2011:Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans.Climate Dyn., 36, 769-782, doi: 10.1007/s00382-009-0658-9.
    50. Wu, R., and B. Wang,2000:Interannual variability of summer monsoon onset over the western north Pacific and the underlying processes.J. Climate, 13, 2483-2501, doi: 10.1175/1520-0442(2000)013<2483:IVOSMO>2.0.CO;2..
    51. Wu, R.,J. L. Kinter, and B. P. Kirtman,2005:Discrepancy of interdecadal changes in the Asian region among the NCEP-NCAR reanalysis, objective analyses, and observations.J. Climate, 18, 3048-3067, doi: 10.1175/jcli3465.1.
    52. Xu, K.,C. Zhu, and J. He,2012:Linkage between the dominant modes in Pacific subsurface ocean temperature and the two type ENSO events.Chinese Science Bulletin, 57(26), 3491-3496, doi: 10.1007/s11434-012-5173-4.
    53. Yang, S.,K. M. Lau, and K. M. Kim,2002:Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies.J. Climate, 15(3), 306-325, doi: 10.1175/1520-0442(2002)015<0306:voteaj>2.0.co;2.
    54. Yeh, S.-W.,J.-S. Kug,B. Dewitte,M.-H. Kwon,B. P. Kirtman, and F.-F. Jin,2009:El Ni?o in a changing climate.Nature, 461, 511-514, doi: 10.1038/nature08316.
    55. Yu, J.-Y., and H.-Y. Kao,2007:Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001. J. Geophys. Res., 112, D13106, doi: 10.1029/2006JD007654.
    56. Yu, J.-Y., and S. T. Kim,2010:Three evolution patterns of central-Pacific El Ni?o.Geophys. Res. Lett., 37, L08706, doi: 10.1029/2010gl042810.
    57. Yu, J.-Y.,H.-Y. Kao, and T. Lee,2010:Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific.J. Climate, 23(11), 2869-2884, doi:10.1175/2010jcli3171.1.
    58. Yu, J.-Y.,Y. Zou,S. T. Kim, and T. Lee,2012:The changing impact of El Ni?o on US winter temperatures.Geophys. Res. Lett., 39, L15702, doi: 10.1029/2012GL052483.
    59. Zhang, R.,A. Sumi, and M. Kimoto,1996:Impact of El Ni?o on the East Asian monsoon: A diagnostic study of the '86/87 and '91/92 events.J. Meteor. Soc. Japan, 74, 49-62.
    60. Zhang, W.,F.-F. Jin,J. Li, and H.-L. Ren,2011:Contrasting impacts of two-type El Ni?o over the western north Pacific during boreal autumn.J. Meteor. Soc. Japan, 89, 563-569, doi: 10.2151/jmsj.2011-510.
    61. Zhu, C.,B. Wang,W. Qian, and B. Zhang,2012:Recent weakening of northern East Asian summer monsoon: A possible response to global warming.Geophys. Res. Lett., 39, L09701, doi: 10.1029/2012GL051155.
  • [1] Yuan Zhuojian, Jian Maoqiu, 2001: Diagnostic Equations for the Walker Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 166-178.  doi: 10.1007/s00376-001-0011-7
    [2] Chen Lieting, Fan Zhen, 1993: The Southern Oscillation / Northern Oscillation Cycle Associated with Sea Surface Temperature in the Equatorial Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 353-364.  doi: 10.1007/BF02658141
    [3] WANG Zhiren, WU Dexing, CHEN Xue'en, QIAO Ran, 2013: ENSO Indices and Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1491-1506.  doi: 10.1007/s00376-012-2238-x
    [4] Zhang Weiqing, Qian Yongfu, 2001: The Relationships between Variations of Sea SurfaceTemperature Anomalies in the Key Ocean Areasand the Precipitation and SurfaceAir Temperature in China, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 294-308.  doi: 10.1007/s00376-001-0021-5
    [5] Buwen DONG, LU Riyu, 2013: Interdecadal Enhancement of the Walker Circulation over the Tropical Pacific in the Late 1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 247-262.  doi: 10.1007/s00376-012-2069-9
    [6] Pavla PEKAROVA, Jan PEKAR, 2007: Teleconnections of Inter-Annual Streamflow Fluctuation in Slovakia with Arctic Oscillation, North Atlantic Oscillation, Southern Oscillation, and Quasi-Biennial Oscillation Phenomena, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 655-663.  doi: 10.1007/s00376-007-0655-z
    [7] Tim LI, ZHANG Lei, Hiroyuki MURAKAMI, 2015: Strengthening of the Walker Circulation under Global Warming in an Aqua-Planet General Circulation Model Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1473-1480.  doi: 10.1007/s00376-015-5033-7
    [8] Botao ZHOU, Ying SHI, Ying XU, 2016: CMIP5 Simulated Change in the Intensity of the Hadley and Walker Circulations from the Perspective of Velocity Potential, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 808-818.  doi: 10.1007/s00376-016-5216-x
    [9] Han QIN, Ji NIE, Zhiyong MENG, 2024: A Tri-mode of Mock-Walker Cells, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 671-679.  doi: 10.1007/s00376-023-3032-7
    [10] Hanying LI, Peng HU, Qiong ZHANG, Ashish SINHA, Hai CHENG, 2021: Understanding Interannual Variations of the Local Rainy Season over the Southwest Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1852-1862.  doi: 10.1007/s00376-021-1065-3
    [11] ZENG Gang, SUN Zhaobo, Wei-Chyung WANG, MIN Jinzhong, 2007: Interdecadal Variability of the East Asian Summer Monsoon and Associated Atmospheric Circulations, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 915-926.  doi: 10.1007/s00376-007-0915-y
    [12] Li Chongyin, Li Guilong, 1997: Evolution of Intraseasonal Oscillation over the Tropical Western Pacific / South China Sea and Its Effect to the Summer Precipitation in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 246-254.  doi: 10.1007/s00376-997-0023-z
    [13] Chen Lieting, 1985: THE SOUTHERN OSCILLATION AND ITS ASSOCIATEDSUMMER RAINFALLS IN CHINA-CONCURRENTDISCUSSION OF THE RELATIONSHIP BETWEEN THE SOURTHERN OSCILLATION AND WALKER CIRCULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 542-548.  doi: 10.1007/BF02678752
    [14] Huang Ronghui, 1994: Interactions between the 30-60 Day Oscillation, the Walker Circulation and the Convective Activities in the Tropical Western Pacific and Their Relations to the Interannual Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 367-384.  doi: 10.1007/BF02658156
    [15] Jianjun Xu, Johnny C. L. Chan, 2002: Interannual and Interdecadal Variability of Winter Precipitation over China in Relation to Global Sea Level Pressure Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 914-926.  doi: 10.1007/s00376-002-0055-3
    [16] ZHOU Botao, ZHAO Ping, 2010: Influence of the Asian-Pacific Oscillation on Spring Precipitation over Central Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 575-582.  doi: 10.1007/s00376-009-9058-7
    [17] Jiapeng MIAO, Tao WANG, Huijun WANG, Jianqi SUN, 2018: Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 645-658.  doi: 10.1007/s00376-017-7134-y
    [18] Xinyu LI, Riyu LU, 2019: Seesaw Pattern of Rainfall Anomalies between the Tropical Western North Pacific and Central Southern China during Late Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 261-270.  doi: 10.1007/s00376-018-8130-6
    [19] HAN Xue, WEI Fengying, Yves M. TOURRE, DONG Wenjie, 2008: Spatio-temporal Variability of Northern Hemipheric Sea Level Pressure (SLP) and Precipitation over the Mid-to-Low Reaches of the Yangtze River, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 458-466.  doi: 10.1007/s00376-008-0458-x
    [20] BAO Ming, HAN Rongqing, 2009: Delayed Impacts of the El Nino Episodes in the Central Pacific on the Summertime Climate Anomalies of Eastern China in 2003 and 2007, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 553-563.  doi: 10.1007/s00376-009-0553-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 26 October 2012
Manuscript revised: 22 January 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Two Types of El Nio-related Southern Oscillation and Their Different Impacts on Global Land Precipitation

  • 1. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044; 
  • 2. Institute of Climate Systems, Chinese Academy of Meteorological Sciences, Beijing 100081
Fund Project:  The author acknowledges the anonymous reviewers for their helpful comments and suggestions. This study was jointly supported by the National Natural Science Foundation of China (Grant No. 41221064), the 973 Program of China (Grant No. 2012CB417403), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05090408), the key program of the Chinese Academy of Meteorological Science (Grant No. 2010Z003 and 2013Z002), and the Research and Innovation Project for College Graduates of Jiangsu Province (Grant No. CXLX11_0618).

Abstract: The contrast between the eastern and central Pacific (EP- and CP-) El Nio is observed in the different responses of zonal and vertical circulation in the tropics. To measure the different responses of the atmospheric circulation to the two types of El Ni, an eastern and a central Pacific southern oscillation index (EP- and CP-SOI) are defined based on the air-sea coupled relationship between eddy sea level pressure and sea surface temperature. Analyses suggest that while the EP-SOI exhibits variability on an interannual (27-yr) time scale, decadal (1015-yr) variations in the CP-SOI are more dominant; both are strongly coupled with their respective EP- and CP-El Nio patterns. Composite analysis suggests that, during EP-ENSO, the Walker circulation exhibits a dipole structure in the lower-level (850 hPa) and upper-level (200 hPa) velocity potential anomalies and exhibits a signal cell over the Pacific. In the case of CP-ENSO, however, the Walker circulation shows a tripole structure and exhibits double cells over the Pacific. In addition, the two types of ENSO events show opposite impacts on global land precipitation in the boreal winter and spring seasons. For example, seasonal precipitation across mainland China exhibits an opposite relationship with the EP- and CP-ENSO during winter and spring, but the rainfall over the lower reaches of the Yangtze River and South China shows an opposite relationship during the rest of the seasons. Therefore, the different relationships between rainfall and EP- and CP-ENSO should be carefully considered when predicting seasonal rainfall in the East Asian monsoon regions.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint