Advanced Search
Article Contents

Remote Effects of Tropical Cyclone Wind Forcing over the Western Pacific on the Eastern Equatorial Ocean

Fund Project:

doi: 10.1007/s00376-013-2283-0

  • An ocean general circulation model (OGCM) is used to demonstrate remote effects of tropical cyclone wind (TCW) forcing in the tropical Pacific. The signature of TCW forcing is explicitly extracted using a locally weighted quadratic least-squares regression (called as LOESS) method from six-hour satellite surface wind data; the extracted TCW component can then be additionally taken into account or not in ocean modeling, allowing isolation of its effects on the ocean in a clean and clear way. In this paper, seasonally varying TCW fields in year 2008 are extracted from satellite data which are prescribed as a repeated annual cycle over the western Pacific regions off the equator (poleward of 10oN/S); two long-term OGCM experiments are performed and compared, one with the TCW forcing part included additionally and the other not. Large, persistent thermal perturbations (cooling in the mixed layer (ML) and warming in the thermocline) are induced locally in the western tropical Pacific, which are seen to spread with the mean ocean circulation pathways around the tropical basin. In particular, a remote ocean response emerges in the eastern equatorial Pacific to the prescribed off-equatorial TCW forcing, characterized by a cooling in the mixed layer and a warming in the thermocline. Heat budget analyses indicate that the vertical mixing is a dominant process responsible for the SST cooling in the eastern equatorial Pacific. Further studies are clearly needed to demonstrate the significance of these results in a coupled ocean-atmosphere modeling context.
  • 1. Atlas, R., and Coauthors,2011:A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications.Bull. Amer. Meteor. Soc., 92, 157-174. doi: 10.1175/2010BAMS2946.1.
    2. Camargo, S. J., and A. H. Sobel,2005:Western North Pacific tropical cyclone intensity and ENSO.J. Climate, 18, 2996-3006.
    3. Camargo, S. J.,K. A. Emanuel, and A. H. Sobel,2007:Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis.J. Climate, 20, 4819-4834.
    4. Chan, J. C. L.,1985:Tropical cyclone activity in the northwest Pacific in relation to the El Ni?o/Southern Oscillation phenomenon.Mon. Wea. Rev., 113, 599-606.
    5. Chan, J. C. L.,2000:Tropical cyclone activity over the western North Pacific associated with El Ni?o and La Ni?a events.J. Climate, 13, 2960-2972.
    6. Chen, D.,L. M. Rothstein, and A. J. Busalacchi,1994:A hybrid vertical mixing scheme and its application to tropical ocean models.J. Phys. Oceanogr., 24, 2156-2179.
    7. Chen, G., and C. Y. Tam,2010:Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific.Geophys. Res. Lett., 37, L01803, doi: 10.1029/2009GL041708.
    8. Chen, T.-C.,S.-Y. Wang, and M.-C. Yen,2006:Interannual variation of the tropical cyclone activity over the western North Pacific.J. Climate, 19, 5709-5720.
    9. Chia, H.-H., and C. F. Ropelewski,2002:The interannual variability in the genesis location of tropical cyclones in the northwest Pacific.J. Climate, 15, 2934-2944.
    10. Chu, J.-H.,C. R. Sampson,A. S. Levin, and E. Fukada,2002: The joint typhoon warning center tropical cyclone best tracks 1945-2000. Joint Typhoon Warning Center Rep., Pearl Harbor, HI, 22pp.
    11. Elsner, J. B., and K.-B. Liu,2003:Examining the ENSO-typhoon hypothesis.Climate Research, 25, 43-54.
    12. Emanuel, K. A.,1987:The dependence of hurricane intensity on climate.Nature, 326, 483-485.
    13. Emanuel, K.,2001:Contribution of tropical cyclones to meridional heat transport by the oceans.J. Geophys. Res., 106, 14771-14781.
    14. Fedorov, A. V.,C. M. Brierley, and K. Emanuel,2010:Tropical cyclones and permanent El Ni?o in the early Pliocene epoch.Nature, 463, 1066-1070.
    15. Gent, P., and M. A. Cane,1989:A reduced gravity, primitive equation model of the upper equatorial ocean.J. Comput. Phys., 81, 444-480.
    16. Ginis, I.,2002:Tropical cyclone-ocean interactions.Atmosphere-Ocean Interactions. Vol. 33, Advances in Fluid Mechanics Series, W. Perrie, Ed., WIT Press, 83-114.
    17. Gu, D.-F., and S. G. H. Philander,1997:Interdecadal climate fluctuations that depend on exchanges between the tropical and extratropics,Science, 275, 805-807.
    18. Hackert, E.,A. Busalacchi, and R. Murtugudde,2001:A wind comparison study using an ocean general circulation model for the 1997-98 El Ni?o. J. Geophys. Res., 106, 2345-2362.
    19. Henderson-Sellers, A., and Coauthors,1998:Tropical cyclones and global climate change: A post-IPCC assessment.Bull. Amer. Meteor. Soc., 79, 19-38.
    20. Hu, A., and G. A. Meehl,2009:Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport.Geophys. Res. Lett., 36, L03702, doi: 10.1029/2008GL036680.
    21. Huang, P.,T. B. Sanford, and J. Imberger,2009:Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004).J. Geophys. Res., 114, C12023, doi: 10.1029/2009JC005603.
    22. Irwin, R. P., and R. E. Davis,1999:The relationship between the Southern Oscillation Index and tropical cyclone tracks in the eastern North Pacific.Geophys. Res. Lett., 20, 2251-2254.
    23. Jacob, S. D.,L. K. Shay, and A. J. Mariano,2000:The 3D oceanic mixed layer response to hurricane Gilbert.J. Phys. Oceanogr., 30, 1407-1429.
    24. Jansen, M., and R. Ferrari,2009:Impact of the latitudinal distribution of tropical cyclones on ocean heat transport.Geophys. Res. Lett., 36, L06604, doi: 10.1029/2008GL036796.
    25. Kessler, W. S.,L. M. Rothstein, and D. Chen,1998:The annual cycle of SST in the eastern tropical Pacific, diagnosed in an ocean GCM.J. Climate, 11, 777-799.
    26. Kim, H.-M.,P. J. Webster, and J. A. Curry,2011:Modulation of North Pacific tropical cyclone activity by three phases of ENSO.J. Climate, 24, 1839-1849, doi: 10.1175/2010JCLI3939.1
    27. Korty, R. L.,K. Emanuel, and J. R. Scott,2008:Tropical cyclone-induced upper-ocean mixing and climate: Application to equable climates.J. Climate, 21, 638-654.
    28. Levitus, S.,J. I. Antonov, and T. P. Boyer,2005:Warming of the world ocean, 1955-2003. Geophys. Res. Lett., 32, L02604, doi: 10.1029GL021592.
    29. Lin, I.-I.,W. T. Liu,C.-C. Wu,J. C. H. Chiang, and C.-H. Sui,2003:Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling.Geophys. Res. Lett., 30, 1131, doi: 10.1029/2002GL015674.
    30. McCreary, J. P., and P. Lu,1994:Interaction between the subtropical and equatorial ocean circulations: The subtropical gyre,J. Phys. Oceanogr., 24, 466-497.
    31. Monterey, G. I., and S. Levitus,1997: Seasonal variability of mixed layer depth for the World Ocean. NOAA NESDIS Atlas 14, 100pp.
    32. Murtugudde, R., and A. J. Busalacchi,1998:Salinity effects in a tropical ocean model.J. Geophys. Res., 103, 3283-3300.
    33. Murtugudde, R.,R. Seager, and A. J. Busalacchi,1996:Simulation of tropical oceans with an ocean GCM coupled to an atmospheric mixed layer model.J. Climate, 9, 1795-1815.
    34. Murtugudde, R.,J. Beauchamp,C. R. McClain,M. Lewis, and A. J. Busalacchi,2002:Effects of penetrative radiation on the upper tropical ocean circulation.J. Climate. 15, 470-486.
    35. O'Neill, L.W.,D. B. Chelton, and S. K. Esbensen,2010:The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence.J. Climate, 23, 255-281.
    36. Pacanowski, R. C., and S. M. Griffies,1998: MOM 3.0 Manual. NOAA/Geophysical Fluid Dynamics Laboratory, 700pp. [Available online at http://www. ocgy.ubc.ca/~yzq/books/MOM3/guide_parent.html.]
    37. Pasquero, C., and K. Emanuel,2008:Tropical cyclones and transient upper ocean warming.J. Climate, 21, 129-141.
    38. Price, J. F.,1981:Upper ocean response to a hurricane.J. Phys. Oceanogr., 11, 153-175.
    39. Price, J. F.,J. Morzel, and P. P. Niiler,2008:Warming of SST in the cool wake of a moving hurricane.J. Geophys. Res., 113, C07010, doi: 10.1029/2007JC004393.
    40. Rothstein, L. M.,R.-H. Zhang,A. J. Busalacchi, and D. Chen,1998:A numerical simulation of the mean water pathways in the subtropical and tropical Pacific Ocean.J. Phys. Oceanogr., 28, 322-343.
    41. Seager, R.,M. Blumenthal, and Y. Kushinir,1995:An advective atmospheric mixed layer model for ocean modeling purposes: Global simulation of surface heat fluxes.J. Climate, 8, 1951-1964.
    42. Sriver, R. L., and M. Huber,2007:Observational evidence for an ocean heat pump induced by tropical cyclones.Nature, 447, 557-580.
    43. Sriver, R. L., and M. Huber,2010:Modeled sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation.Geophys. Res. Lett., 37, L08704, doi: 10.1029/2010GL042836.
    44. Sriver, R. L.,M. Goes,M. E. Mann, and K. Keller,2010:Climate response to tropical cyclone-induced ocean mixing in an Earth system model of intermediate complexity.J. Geophys. Res., 115, C10042, doi: 10.1029/2010JC006106.
    45. Vincent, E. M.,M. Lengaigne,G. Madec,J. Vialard,G. Samson,N. C. Jourdain,C. E. Menkes, and S. Jullien,2012:Processes setting the characteristics of sea surface cooling induced by tropical cyclones.J. Geophys. Res., 117, C02020, doi: 10.1029/2011JC007396.
    46. Wang, B., and J. C. L. Chan,2002:How strong ENSO events affect tropical storm activity over the western North Pacific.J. Climate, 15, 1643-1658.
    47. Webster, P. J., G. J. Holland ,J. A. Curry, and H.-R. Chang,2005:Changes in tropical cyclone number, duration and intensity in a warming environment.Science, 309, 1844-1846.
    48. Wentz, F. J.,C. Gentemann,D. Smith, and D. Chelton,2000:Satellite measurements of sea surface temperature through clouds.Science, 288, 847-850.
    49. Xie, P., and P. Arkin,1995:An intercomparison of gauge observations and satellite estimates of monthly precipitation.J. Appl. Meteor., 34, 1143-1160.
    50. Zedler, S. E.,2009:Simulations of the ocean response to a hurricane: Nonlinear processes.J. Phys. Oceanogr., 39, 2618-2634.
    51. Zhang, R.-H., and A. J. Busalacchi,1999:A possible link between off-equatorial warm anomalies propagating along the NECC path and the onset of the 1997-98 El Ni?o. Geophys. Res. Lett., 26, 2873-2876.
    52. Zhang, R.-H., and Z. Liu,1999:Decadal thermocline variability in the North Pacific Ocean: Two anomaly pathways around the Subtropical Gyre.J. Climate, 12, 3273-3296.
    53. Zhang, R.-H., and L. M. Rothstein,2000:Role of off-equatorial subsurface anomalies in initiating the 1991-1992 El Ni?o as revealed by the National Centers for Environmental Prediction ocean reanalysis data. J. Geophys. Res., 105C, 6327-6339, doi: 10.1029/1999JC900316.
    54. Zhang, R.-H., and A. J. Busalacchi,2008:Rectified effects of tropical instability wave (TIW)-induced atmospheric wind feedback in the tropical Pacific.Geophys. Res. Lett., 35, L05608, doi: 10.1029/2007GL033028.
    55. Zhang, R.-H., and A. J. Busalacchi,2009:Freshwater flux (FWF)-induced oceanic feedback in a hybrid coupled model of the tropical Pacific.J. Climate, 22(4), 853-879.
    56. Zhang, R.-H., and Z. G. Wang,2013:Model evidence for interdecadal pathway changes in the subtropics and tropics of the South Pacific Ocean.Adv. Atmos. Sci., 30, 1-9, doi: 10.1007/s00376-012-2048-1.
    57. Zhang, R.-H.,L. M. Rothstein,A. J. Busalacchi, and X. Z. Liang,1999:The onset of the 1991-92 El Ni?o event in the tropical pacific ocean: The NECC subsurface pathway. Geophys. Res. Lett., 26, 847-850.
    58. Zhang, R.-H.,T. Takashi, and S. E. Zebiak,2001:Subduction of decadal North Pacific thermal anomalies in an ocean GCM.Geophys. Res. Lett., 28, 2449-2452.
    59. Zhang, R.-H.,A. J. Busalacchi, and R. G. Murtugudde,2006:Improving SST anomaly simulations in a layer ocean model with an embedded entrainment temperature submodel.J. Climate, 19, 4638-4663.
    60. Zhang, R.-H.,A. J. Busalacchi,X. Wang,J. Ballabrera-Poy,R. G. Murtugudde,E. C. Hackert, and D. Chen,2009:Role of ocean biology-induced climate feedback in the modulation of El Ni?o-Southern Oscillation.Geophys. Res. Lett., 36, L03608, doi: 10.1029/2008GL036568.
    61. Zhang, R.-H.,F. Zheng,J. Zhu,Y. H. Pei,Q. Zheng, and Z. G. Wang,2012:Modulation of El Ni?o-Southern Oscillation by freshwater flux and salinity variability in the tropical Pacific.Adv. Atmos. Sci., 29, 647-660, doi: 10.1007/s00376-012-1235-4.
    62. Zhang, R.-H.,F. Zheng,J. Zhu, and Z. G. Wang,2013:A successful real-time forecast of the 2010-11 La Ni?a event. Sci. Rep., 3, 1108, doi: 10.1038/srep01108.
  • [1] ZHANG Rong-Hua, WANG Zhanggui, 2013: Model Evidence for Interdecadal Pathway Changes in the Subtropics and Tropics of the South Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1-9.  doi: 10.1007/s00376-012-2048-1
    [2] Eric P. CHASSIGNET, Xiaobiao XU, 2021: On the Importance of High-Resolution in Large-Scale Ocean Models, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1621-1634.  doi: 10.1007/s00376-021-0385-7
    [3] ZHANG Rong-Hua, 2015: A Hybrid Coupled Model for the Pacific Ocean-Atmosphere System. Part I: Description and Basic Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 301-318.  doi: 10.1007/s00376-014-3266-5
    [4] Igor Oliveira RIBEIRO, Rodrigo Augusto Ferreira de SOUZA, Rita Valèria ANDREOLI, Mary Toshie KAYANO, Patrícia dos Santos COSTA, 2016: Spatiotemporal Variability of Methane over the Amazon from Satellite Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 852-864.  doi: 10.1007/s00376-016-5138-7
    [5] Mingxin LI, Yali LUO, Min MIN, 2022: Characteristics of Pre-summer Daytime Cloud Regimes over Coastal South China from the Himawari-8 Satellite, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2008-2023.  doi: 10.1007/s00376-021-1148-1
    [6] Xing ZHANG, Mu MU, Qiang WANG, Stefano PIERINI, 2017: Optimal Precursors Triggering the Kuroshio Extension State Transition Obtained by the Conditional Nonlinear Optimal Perturbation Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 685-699.  doi: 10.1007/s00376-017-6263-7
    [7] Jincheng WANG, Xingwei JIANG, Xueshun SHEN, Youguang ZHANG, Xiaomin WAN, Wei HAN, Dan WANG, 2023: Assimilation of Ocean Surface Wind Data by the HY-2B Satellite in GRAPES: Impacts on Analyses and Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 44-61.  doi: 10.1007/s00376-022-1349-2
    [8] FU Weiwei, ZHOU Guangqing, WANG Huijun, 2006: Modeling the Tropical Pacific Ocean Using a Regional Coupled Climate Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 625-638.  doi: 10.1007/s00376-006-0625-x
    [9] Qiu Jinhuan, Nobuo Takeuchi, 2001: Effects of Aerosol Vertical Inhomogeneity on the Upwelling Radiance and Satellite Remote Sensing of Surface Reflectance, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 539-553.  doi: 10.1007/s00376-001-0043-z
    [10] YAN Changxiang, ZHU Jiang, XIE Jiping, 2015: An Ocean Data Assimilation System in the Indian Ocean and West Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1460-1472.  doi: 10.1007/s00376-015-4121-z
    [11] Li Jun, Zhou Fengxian, Gao Qinghuai, 1990: Delineation of Mesoscale Features of Ocean on Satellite IR Image, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 423-432.  doi: 10.1007/BF03008872
    [12] WEN Yuanqiao, HUANG Liwen, DENG Jian, ZHANG Jinfeng, WANG Sisi, WANG Lijun, 2006: Framework of Distributed Coupled Atmosphere-Ocean-Wave Modeling System, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 442-448.  doi: 10.1007/s00376-006-0442-2
    [13] YAN Changxiang, ZHU Jiang, ZHOU Guangqing, 2007: Impacts of XBT, TAO, Altimetry and ARGO Observations on the Tropical Pacific Ocean Data ssimilationImpacts of XBT, TAO, Altimetry and ARGO Observations on the Tropical Pacific Ocean Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 383-398.  doi: 10.1007/s00376-007-0383-4
    [14] Fuzhong WENG, Xinwen YU, Yihong DUAN, Jun YANG, Jianjie WANG, 2020: Advanced Radiative Transfer Modeling System (ARMS): A New-Generation Satellite Observation Operator Developed for Numerical Weather Prediction and Remote Sensing Applications, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 131-136.  doi: 10.1007/s00376-019-9170-2
    [15] Lei WANG, Guanghua CHEN, 2018: Impact of the Spring SST Gradient between the Tropical Indian Ocean and Western Pacific on Landfalling Tropical Cyclone Frequency in China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 682-688.  doi: 10.1007/s00376-017-7078-2
    [16] LI Chongyin, HU Ruijin, YANG Hui, 2005: Intraseasonal Oscillation in the Tropical Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 617-624.  doi: 10.1007/BF02918705
    [17] SHI Chong, WANG Pucai, Teruyuki NAKAJIMA, Yoshifumi OTA, TAN Saichun, SHI Guangyu, 2015: Effects of Ocean Particles on the Upwelling Radiance and Polarized Radiance in the Atmosphere-Ocean System, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1186-1196.  doi: 10.1007/s00376-015-4222-8
    [18] LI Yangchun, XU Yongfu, 2012: Uptake and Storage of Anthropogenic CO2 in the Pacific Ocean Estimated Using Two Modeling Approaches, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 795-809.  doi: 10.1007/s00376-012-1170-4
    [19] Wansuo DUAN, Xixi WEN, 2019: Errors in Current Velocity in the Low-latitude North Pacific: Results from the Regional Ocean Modeling System, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 397-416.  doi: 10.1007/s00376-018-8140-4
    [20] Wei ZHOU, Mengyan CHEN, Wei ZHUANG, Fanghua XU, Fei ZHENG, Tongwen WU, Xin WANG, 2016: Evaluation of the Tropical Variability from the Beijing Climate Center's Real-Time Operational Global Ocean Data Assimilation System, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 208-220.  doi: 10.1007/s00376-015-4282-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 27 November 2012
Manuscript revised: 05 February 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Remote Effects of Tropical Cyclone Wind Forcing over the Western Pacific on the Eastern Equatorial Ocean

    Corresponding author: ZHANG Rong-Hua; 
  • 1. State Key Laboratory of Satellite Ocean Environment Dynamics, the 2nd Institute of Oceanography, State Oceanic Administration, Hangzhou 310012; 
  • 2. Earth System Science Interdisciplinary Center, University of Maryland, Maryland, USA; 
  • 3. College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266003
Fund Project:  We would like to thank A. J. BUSALACCHI, J.-L. SU, and D.-L. ZHANG for their comments, and D. CHELTON and O'NEILL for providing the locally weighted regression (LOESS) code that is utilized for extracting TC wind fields in this work. The author wishes to thank anonymous reviewers for their numerous comments. This research is supported in part by NSF Grant (Grant No. AGS-1061998), NOAA Grant (Grant No. NA08OAR4310885), and NASA Grants (Grant Nos. NNX08AT50G and NNX09AF41G); D. Chen is supported by the National Basic Research Program of China (Grant No. 2013CB430302) and the Public Science and Technology Research Funds of Ocean (Grant No. 201105018); Pei is additionally supported by China Scholarship Council (CSC) with The Ocean University of China, Qingdao, China. The TMI SST data are available from the Remote Sensing Systems website at www.remss.com; the CCMP wind data are available from NASA website at http://podaac.jpl.nasa.gov/.

Abstract: An ocean general circulation model (OGCM) is used to demonstrate remote effects of tropical cyclone wind (TCW) forcing in the tropical Pacific. The signature of TCW forcing is explicitly extracted using a locally weighted quadratic least-squares regression (called as LOESS) method from six-hour satellite surface wind data; the extracted TCW component can then be additionally taken into account or not in ocean modeling, allowing isolation of its effects on the ocean in a clean and clear way. In this paper, seasonally varying TCW fields in year 2008 are extracted from satellite data which are prescribed as a repeated annual cycle over the western Pacific regions off the equator (poleward of 10oN/S); two long-term OGCM experiments are performed and compared, one with the TCW forcing part included additionally and the other not. Large, persistent thermal perturbations (cooling in the mixed layer (ML) and warming in the thermocline) are induced locally in the western tropical Pacific, which are seen to spread with the mean ocean circulation pathways around the tropical basin. In particular, a remote ocean response emerges in the eastern equatorial Pacific to the prescribed off-equatorial TCW forcing, characterized by a cooling in the mixed layer and a warming in the thermocline. Heat budget analyses indicate that the vertical mixing is a dominant process responsible for the SST cooling in the eastern equatorial Pacific. Further studies are clearly needed to demonstrate the significance of these results in a coupled ocean-atmosphere modeling context.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint