Advanced Search
Article Contents

Impacts of Two Types of El Nio on Atmospheric Circulation in the Southern Hemisphere

Fund Project:

doi: 10.1007/s00376-013-2287-9

  • Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data from 1979 to 2010, the impacts of two types of El Nio on atmospheric circulation in the Southern Hemisphere (SH) are analyzed. It is shown that, when a warming event occurs in the equatorial eastern Pacific (EP El Nio), there is a negative sea level pressure (SLP) anomaly in the eastern Pacific and a positive one in the western Pacific. Besides, there exists a negative anomaly between 40oS and 60oS and a positive anomaly to the south of 60oS. When a warming event in the central Pacific (CP El Nio) occurs, there appears a negative SLP anomaly in the central Pacific and a positive SLP anomaly in the eastern and western Pacific, but the SLP anomalies are not so evident in the SH extratropics. In particular, the Pacific-South America (PSA) pattern induced by the CP El Nio is located more northwestward, with a weaker anomaly compared with the EP El Nio. This difference is directly related with the different position of heating centers associated with the two types of El Nio events. Because the SST anomaly associated with CP El Nio is located more westward than that associated with EP El Nio, the related heating center tends to move westward and the response of SH atmospheric circulation to the tropical heating changes accordingly, thus exciting a different position of the PSA pattern. It is also noted that the local meridional cell plays a role in the SH high latitudes during EP El Nio. The anomalous ascending motion due to the enhancement of convection over the eastern Pacific leads to an enhancement of the local Hadley cell and the meridional cell in the middle and high latitudes, which in turn induces an anomalous descending motion and the related positive anomaly of geopotential height over the Amundsen-Bellingshausen Sea.
  • 1. Ashok, K., and T. Yamagata,2009:The El Ni?o with a difference.Nature, 461,481-484.
    2. Ashok, K.,S. Behera,S. A. Rao,H. Weng, and T. Yamagata,2007:El Ni?o Modoki and its teleconnection.J. Geophys. Res., 112, C11, doi: 10.1029/2006JC003798.
    3. Cai, W., and T. Cowan,2009:La Ni?a Modoki impacts Australia autumn rainfall variability.Geophys. Res. Lett., 36, L12805, doi: 10.1029/2009GL037885.
    4. Connolley, W. M.,1997:Variability in annual mean circulation in southern high latitudes.Climate Dyn., 13,745-756.
    5. Feng, J., and J. Li,2011:Influence of El Ni?o Modoki on spring rainfall over south China.J. Geophys. Res., 116, D13102, doi: 10.1029/2010JD015160.
    6. Feng, J.,L. Wang,W. Chen,S. K. Fong, and K. C. Leong,2010:Different impacts of two types of Pacific Ocean warming on southeast Asian rainfall during boreal winter.J. Geophys. Res., 115, D24112, doi: 10.1029/2010JD014761.
    7. Feng, J.,W. Chen,C.-Y. Tam, and W. Zhou,2011:Different impacts of El Ni?o and El Ni?o Modoki on China rainfall in the decaying phases.Int. J. Climatol., 31,2091-2101.
    8. Garreaud, R. D., and D. S. Battisti,1999:Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation.J. Climate, 12,2113-2123.
    9. Gill, A. E.,1980:Some simple solutions for heat-induced tropical circulation.Quart. J. Roy. Meteor. Soc., 106,447-462.
    10. Hoskins, B. J., and D. J. Karoly,1981:The steady linear response of a spherical atmosphere to thermal and orographic forcing.J. Atmos. Sci., 38,1179-1196.
    11. Huffman, G. J., and Coauthors,1997:The Global Precipitation Climatology Project (GPCP) combined precipitation dataset.Bull. Amer. Meteor. Soc., 78,5-20.
    12. Kalnay, E. M., and Coauthors,1996:The NCEP/NCAR40 year reanalysis project.Bull. Amer. Meteor. Soc., 77,437-471.
    13. Kao, H. Y., and J. Y. Yu,2009:Contrasting eastern-Pacific and central-Pacific types of ENSO.J. Climate, 22,615-632.
    14. Karoly, D. J.,1989:Southern Hemisphere circulation features associated with El Ni?o-Southern Oscillation events.J. Climate, 2,1239-1252.
    15. Kidson, J. W.,1999:Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP-NCAR reanalyses.J. Climate, 12,2808-2830.
    16. Kiladis, G. N., and K. C. Mo,1998:Interannual and intraseasonal variability in the Southern Hemisphere. Chapter 8,Meteorology of the Southern Hemisphere, Karoly and Vincent, Eds., American Meteorological Society Monograph, No. 27, Boston, Massachussetts,307-336.
    17. Kug, J.,F. Jin, and S. An,2009:Two types of El Ni?o events: Cold tongue El Ni?o and warm pool El Ni?o.J. Climate, 22,1499-1515.
    18. Kumar, K.,B. Rajagopalan,M. Hoerling,G. Bates, and M. Cane,2006:Unraveling the mystery of Indian monsoon failure during El Ni?o.Science, 314,115-119.
    19. Lee, T., and M. J. McPhaden,2010:Increasing intensity of El Ni?o in the central-equatorial Pacific.Geophys. Res. Lett., 37, L14603, doi: 10.1029/2010GL04407.
    20. Liebmann, B., and C. A. Smith,1996:Description of a complete (interpolated) outgoing longwave radiation dataset.Bull. Amer. Meteor. Soc., 77,1275-1277.
    21. Liu, C. Z., and F. Xue,2010:The relationship between the canonical ENSO and the phase transition of the Antarctic oscillation at the quasi-quadrennial timescale.Acta Oceanologica Sinica, 29,28-37.
    22. Matsuno, T.,1966:Quasi-geotropic motions in the equatorial area.J. Meteor. Soc. Japan, 44,25-42.
    23. Mo, K. C., and W. Higgins,1998:The Pacific-South American modes and tropical convection during the Southern Hemisphere winter.Mon. Wea. Rev., 126,1581-1596.
    24. Nigam, S.,1994:The dynamical basis for the Asian summer monsoon rainfall-El Ni?o relationship.J. Climate, 7,1750-1771.
    25. Rayner, N. A.,D. E. Parker, C. K. Folland , L. V. Alexand er,D. P. Rowell,E. C. Kent, and A. Kaplan,2003:Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century.J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.
    26. Renwick, J. A.,1998:ENSO-related variability in the frequency of South Pacific blocking.Mon. Wea. Rev., 126,3117-3123.
    27. Renwick, J. A., and M. J. Revell,1999:Blocking over the South Pacific and Rossby wave propagation.Mon. Wea. Rev., 127,2233-2247.
    28. Revell, M. J.,J. W. Kidson, and G. N. Kiladis,2001:Interpreting low-frequency modes of Southern Hemisphere atmospheric variability as the rotational response to divergent forcing.Mon. Wea. Rev., 129,2416-2425.
    29. Taschetto, A. S., and M. H. England,2009:El Ni?o Modoki impacts on Australian rainfall.J. Climate, 22,3167-3174.
    30. van Loon, H., and D. J. Shea,1987:The Southern Oscillation. Part VI: Anomalies of sea level pressure on the Southern Hemisphere and of Pacific sea surface temperature during the development of a warm event.Mon. Wea. Rev., 115,370-379.
    31. Wang, G. M., and H. H. Hendon,2007:Sensitivity of Australian rainfall to inter-El Ni?o variations.J. Climate, 20,4211-4226.
    32. Weng, H. Y.,K. Ashok,S. K. Behera,S. A. Rao, and T. Yamagata,2007:Impacts of recent El Ni?o Modoki on dry/wet conditions in the Pacific rim during boreal summer.Climate Dyn., 29,113-129.
    33. Weng, H. Y.,S. K. Behera, and T. Yamagata,2009:Anomalous winter climate conditions in the Pacific rim during recent El Ni?o Modoki and El Ni?o events.Climate Dyn., 32,663-674.
    34. Yuan, Y., and S. Yang,2012:Impacts of different types of El Ni?o on the East Asian climate: Focus on ENSO cycles.J. Climate, 25,7702-7722.
    35. Yuan, Y.,S. Yang, and Z. Q. Zhang,2012a:Different evolutions of the Philippine Sea anticyclone between eastern and central Pacific El Ni?o: Effects of Indian Ocean SST.J. Climate, 25,7867-7883.
    36. Yuan, Y.,H. Yang, and C. Y. Li,2012b:Study of El Ni?o events of different types and their potential impact on the following summer precipitation in China.Acta Meteorologica Sinica, 70,467-478. (in Chinese)
    37. Zhou, T., and R. Yu,2004:Sea-surface temperature induced variability of the southern annular mode in an atmospheric general circulation model.Geophys. Res. Lett., 31, L24206, doi: 10.1029 /2004GL021473.
  • [1] Xinyu LI, Riyu LU, 2019: Seesaw Pattern of Rainfall Anomalies between the Tropical Western North Pacific and Central Southern China during Late Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 261-270.  doi: 10.1007/s00376-018-8130-6
    [2] Fangxing FAN, Renping LIN, Xianghui FANG, Feng XUE, Fei ZHENG, Jiang ZHU, 2021: Influence of the Eastern Pacific and Central Pacific Types of ENSO on the South Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 12-28.  doi: 10.1007/s00376-020-0055-1
    [3] Minghao YANG, Chongyin LI, Xin LI, Xiong CHEN, Lifeng LI, 2022: The Linkage between Midwinter Suppression of the North Pacific Storm Track and Atmospheric Circulation Features in the Northern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 502-518.  doi: 10.1007/s00376-021-1145-4
    [4] Wansuo DUAN, Chaoming HUANG, Hui XU, 2017: Nonlinearity Modulating Intensities and Spatial Structures of Central Pacific and Eastern Pacific El Niño Events, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 737-756.  doi: 10.1007/s00376-017-6148-9
    [5] Yuanpu LI, Wenshou TIAN, 2017: Different Impact of Central Pacific and Eastern Pacific El Niño on the Duration of Sudden Stratospheric Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 771-782.  doi: 10.1007/s00376-017-6286-0
    [6] WANG Hai, and LIU Qinyu, 2014: Boreal Winter Rainfall Anomaly over the Tropical Indo-Pacific and Its Effect on Northern Hemisphere Atmospheric Circulation in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 916-925.  doi: 10.1007/s00376-013-3174-0
    [7] Xianghui FANG, Fei ZHENG, 2018: Simulating Eastern- and Central-Pacific Type ENSO Using a Simple Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 671-681.  doi: 10.1007/s00376-017-7209-9
    [8] BAO Ming, HAN Rongqing, 2009: Delayed Impacts of the El Nino Episodes in the Central Pacific on the Summertime Climate Anomalies of Eastern China in 2003 and 2007, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 553-563.  doi: 10.1007/s00376-009-0553-7
    [9] ZHOU Botao, ZHAO Ping, 2010: Influence of the Asian-Pacific Oscillation on Spring Precipitation over Central Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 575-582.  doi: 10.1007/s00376-009-9058-7
    [10] LIN Pengfei, LIU Hailong, ZHANG Xuehong, 2008: Effect of Chlorophyll-a Spatial Distribution on Upper Ocean Temperature in the Central and Eastern Equatorial Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 585-596.  doi: 10.1007/s00376-008-0585-4
    [11] CHEN Xianyan, Masahide KIMOTO, 2009: Simulating Tropical Instability Waves in the Equatorial Eastern Pacific with a Coupled General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1015-1026.  doi: 10.1007/s00376-009-8078-7
    [12] Ruidan CHEN, Zhiping WEN, Riyu LU, Chunzai WANG, 2019: Causes of the Extreme Hot Midsummer in Central and South China during 2017: Role of the Western Tropical Pacific Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 465-478.  doi: 10.1007/s00376-018-8177-4
    [13] LIU Xiangcui, LIU Hailong, 2014: Heat Budget of the South-Central Equatorial Pacific in CMIP3 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 669-680.  doi: 10.1007/s00376-013-2299-5
    [14] Ji Zhengang, Chao Jiping, 1987: TELECONNECTIONS OF THE SEA SURFACE TEMPERATURE IN THE INDIAN OCEAN WTTH SEA SURFACE TEMPERATURE IN THE EASTERN EQUATORIAL PACIFIC, AND WITH THE 500 hPa GEOPOTENTIAL HEIGHT FIELD IN THE NORTHERN HEMISPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 343-348.  doi: 10.1007/BF02663604
    [15] Hu Zengzhen, Tsuyoshi Nitta, 1997: Seasonality of the Interaction between Convection over the Western Pacific and General Circulation in the Northern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 541-553.  doi: 10.1007/s00376-997-0072-3
    [16] Chengyang GUAN, Xin WANG, Haijun YANG, 2023: Understanding the Development of the 2018/19 Central Pacific El Niño, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 177-185.  doi: 10.1007/s00376-022-1410-1
    [17] SUN Jilin, Peter CHU, LIU Qinyu, 2006: The Role of the Halted Baroclinic Mode at the Central Equatorial Pacific in El Ni?no Event, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 45-53.  doi: 10.1007/s00376-006-0005-6
    [18] ZHOU Putian, SUO Lingling, YUAN Jiacan, TAN Benkui, 2012: The East Pacific Wavetrain: Its Variability and Impact on the Atmospheric Circulation in the Boreal Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 471-483.  doi: 10.1007/s00376-011-0216-3
    [19] Wu Aiming, Ni Yunqi, 1997: The Influence of Tibetan Plateau on the Interannual Variability of Atmospheric Circulation over Tropical Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 69-80.  doi: 10.1007/s00376-997-0045-6
    [20] JIAN Maoqiu, QIAO Yunting, YUAN Zhuojian, LUO Huibang, 2006: The Impact of Atmospheric Heat Sources over the Eastern Tibetan Plateau and the Tropical Western Pacific on the Summer Rainfall over the Yangtze-River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 149-155.  doi: 10.1007/s00376-006-0015-4

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 16 November 2012
Manuscript revised: 04 March 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Impacts of Two Types of El Nio on Atmospheric Circulation in the Southern Hemisphere

  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029; 
  • 2. Beijing Meteorological Bureau, Beijing 100089
Fund Project:  We would like to thank Dr. Bohua HUANG for his help, and the comments and suggestions from the two anonymous reviewers are also greatly appreciated. This study was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110201) and the Development and Validation of High Resolution Climate System Model of the National Basic Research Program of China (Grant No. 2010CB951901).

Abstract: Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data from 1979 to 2010, the impacts of two types of El Nio on atmospheric circulation in the Southern Hemisphere (SH) are analyzed. It is shown that, when a warming event occurs in the equatorial eastern Pacific (EP El Nio), there is a negative sea level pressure (SLP) anomaly in the eastern Pacific and a positive one in the western Pacific. Besides, there exists a negative anomaly between 40oS and 60oS and a positive anomaly to the south of 60oS. When a warming event in the central Pacific (CP El Nio) occurs, there appears a negative SLP anomaly in the central Pacific and a positive SLP anomaly in the eastern and western Pacific, but the SLP anomalies are not so evident in the SH extratropics. In particular, the Pacific-South America (PSA) pattern induced by the CP El Nio is located more northwestward, with a weaker anomaly compared with the EP El Nio. This difference is directly related with the different position of heating centers associated with the two types of El Nio events. Because the SST anomaly associated with CP El Nio is located more westward than that associated with EP El Nio, the related heating center tends to move westward and the response of SH atmospheric circulation to the tropical heating changes accordingly, thus exciting a different position of the PSA pattern. It is also noted that the local meridional cell plays a role in the SH high latitudes during EP El Nio. The anomalous ascending motion due to the enhancement of convection over the eastern Pacific leads to an enhancement of the local Hadley cell and the meridional cell in the middle and high latitudes, which in turn induces an anomalous descending motion and the related positive anomaly of geopotential height over the Amundsen-Bellingshausen Sea.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint