Advanced Search
Article Contents

Impact of Dust Aerosol on Glacial-Interglacial Climate

Fund Project:

doi: 10.1007/s00376-013-2289-7

  • The temperature anomaly and dust concentrations recorded from central Antarctic ice core records display a strong negative correlation. The dust concentration recorded from an ice core in central Antarctica is 5070 times higher during glacial periods than interglacial periods. This study investigated the impact of dust aerosol on glacial-interglacial climate, using a zonal energy balance model and dust concentration data from an Antarctica ice core. Two important effects of dust, the direct radiative effect and dust-albedo feedback, were considered. On the one hand, the direct radiative effect of dust significantly cooled the climate during the glacial period, with cooling during the last glacial maximum being as much as 2.05oC in Antarctica. On the other hand, dust deposition onto the ice decreased the surface albedo over Antarctica, leading to increased absorption of solar radiation, inducing a positive feedback that warmed the region by as much as about 0.9oC during the glacial period. However, cooling by the direct dust effect was found to be the controlling effect for the glacial climate and may be the major influence on the strong negative correlation between temperature and dust concentration during glacial periods.
  • 1. Ackerman, A. S.,O. B. Toon,J. P. Taylor,D. W. Johnson,V. H. Peter, and J. F. Ronald,2000:Effects of aerosols on cloud albedo: Evaluation of twomey's parameterization of cloud susceptibility using measurements of ship racks.J. Atmos. Sci., 57,2684-2695.
    2. Andersen, K. K., and P. D. Ditlevsen,1998:Glacial/interglacial variations of meridional transport and washout of dust: A 1-dimensional model.J. Geophys. Res., 103,8955-8962.
    3. Aoki, Te.,T. Tanaka,A. Uchiyama,M. Chiba,M. Mikami, and J. Key,2005:Sensitivity tests of direct radiative forcing by mineral dust using spectrally detailed radiative transfer model.J. Meteor. Soc. Japan, 83A,315-331.
    4. Bar-Or, R.,C. Erlick, and H. Gildor,2008:The role of dust in glacial-interglacial cycles.Quaternary Science Reviews, 27,201-208.
    5. Berger, A.,1978:Long-term variations of daily insolation and Quaternary climatic change.J. Atmos. Sci., 35,2362-2367.
    6. Budyko, M. I.,1969:The effect of solar radiation variations on the climate of the Earth.Tellus, 21,611-619.
    7. Calov, R.,A. Ganopolski,M. Claussen,V. Peoukhov, and R. Greve,2005:Transient simulation of the last glacial inception. Part I: Glacial inception as a bifurcation in the climate system.Climate Dyn., 24,545-561.
    8. Charlson, R. J.,S. E. Schwartz,J. M. Hales,R. D. Cess,J. A. Coakley, Jr.,J. E. Hansen, and D. J. Hofmann,1992:Climate forcing by anthropogenic aerosols.Science, 255,422-430.
    9. Chylek, P., and U. Lohmann,2008:Aerosol radiative forcing and climate sensitivitydeduced from the Last Glacial Maximum to Holocene transition.Geophys. Res. Lett., 35, L04804, doi:10.1029/2007GL032759.
    10. Claquin, T.,C., and Coauthors,2003:Radiative forcing of climate by ice-age atmospheric dust.Climate Dyn., 20,193-202.
    11. Crusius, J.,A. W. Schroth,S. Gassó,C. M. Moy,R. C. Levy, and M. Gatica,2011:Glacial flour dust storms in the Gulf of Alaska: Hydrologic and meteorological controls and their importance as a source of bioavailable iron.Geophys. Res. Lett., 38, L06602, doi: 10.1029/2010GL046573.
    12. David, M.,S. B. Wallace, and W. Gisela,2010:Gustiness: The driver of glacial dustiness?Quaternary Science Reviews, doi: 10.1016/j.quascirev.2010.06.009.
    13. Diaz, J.,F. Exposito,C. Torres,F. Herrera,J. Prospero, and M. Romero,2001:Radiative properties of aerosols in Saharan dust outbreaks using groundbased and satellite data: Applications to radiative forcing.J. Geophys. Res., 106,18403-18416.
    14. Fischer, H.,M. Siggaard-Andersen,U. Ruth,R. R?thlisberger, and E. Wolff,2007:Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: Sources, transport, and deposition.Rev. Geophys., 45(1), doi: 10.1029/2005RG000192.
    15. ,2010]Harrison, S. P., and M. F. S. Go?i,2010:Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period.Quaternary Science Reviews, 29,2957-2980.
    16. Harvey, L. D. D.,1988:Climatic impact of ice-age aerosols.Nature, 334,333-335.
    17. Hayasaka, T.,K. Kawamoto,G. Shi, and A. Ohmura,2006:Importance of aerosols in satellite-derived estimates of surface shortwave irradiance over China.Geophys. Res. Lett., 33, L06802, doi: 10.1029/2005GL025093.
    18. Huang, J. P.,B. Lin,P. Minnis,T. Wang,X. Wang,Y. Hu,Y. Yi, and J. K. Ayers,2006a:Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia.Geophys. Res. Lett., 33, doi: 10.1029/2006GL026561.
    19. Huang, J. P.,P. Minnis,B. Lin,T. Wang,Y. Yi,Y. Hu,S. Sun-Mack, and K. Ayers,2006b:Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES.Geophys. Res. Lett., 33, L06824, doi: 10.1029/2005GL024724.
    20. Huang, J. P., Y. Wang, T. Wang, and Y. Yi, 2006c: Dusty cloud radiative forcing derived from satellite data for middle latitude region of East Asia. Progress in Natural Science, 10,1084-1089.
    21. Huang, J.,J. Ge, and F. Weng,2007:Detection of Asia dust storms using multisensor satellite measurements.Remote Sens. Environ., 110,186-191.
    22. Huang, J.,P. Minnis,B. Chen,Z. Huang,Z. Liu,Q. Zhao,Y. Yi, and J. K. Ayers,2008:Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX,J. Geophys. Res., 113, D23212, doi: 10.1029/2008JD010620.
    23. Huang, J.,Q. Fu,J. Su,Q. Tang,P. Minnis,Y. Hu,Y. Yi, and Q. Zhao,2009:Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints.Atmos. Chem. Phys., 9,4011-4021.
    24. Huang, J.,P. Minnis,H. Yan,Y. Yi,B. Chen,L. Zhang, and J. K. Ayers,2010:Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements.Atmos. Chem. Phys., 10,6863-6872.
    25. Imbrie, J.,A. McIntyre, and A. Mix,1989:Oceanic response to orbital forcing in the late Quaternary: observational and experimental strategies.Climate and Geosciences: A Challenge for Science and Society in the 21th Century, Berger et al., Eds., Kluwer Academic, Boston,121-164.
    26. Kiehl, J. T., and B. P. Briegleb,1993:The relative roles of sulfate aerosols and greenhouse gases in climate forcing.Science, 260,311-314.
    27. Lambert, F., and Coauthors,2008:Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core.Nature, 452,616-619.
    28. Liu, Y., and Coauthors,2011:Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China.Atmos. Chem. Phys., 11,11455-11463. doi: 10.5194/acp-11-11455-2011.
    29. Mahowald, N. M.,M. Yoshioka,W. D. Collins,A. J. Conley,D. W. Fillmore, and D. B. Coleman,2006:Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates.Geophys. Res. Lett., 33, L20705, doi: 10.1029/2006GL026126
    30. Nakajima, T., and Coauthors,2003:Significance of direct and indirect radiative forcings of aerosols in the East China Sea region.J. Geophys. Res., 108, 8658, doi: 10.1029/2002JD003261
    31. North, G. R.,1975:Theory of energy-balance climate models.J. Geophys. Res., 32,2033-2043.
    32. North, G. R.,R. F. Cahalan, and J. A. Coakley,1981:Energy-balance climate models.Rev. Geophys. Space. Phys., 19,91-121.
    33. North, G. R.,J. G. Mengel,D. A. Short,1983:Simple energy balance model resolving the seasons and the continents: Application to the astronomical theory of the Ice Age.J. Geophys. Res., 88, C11,6576-6586.
    34. Overpeck, J.,R. David,L. Andrew, and H. Richard,1996:Possible role of dust-induced regional warming in abrupt climate change during the last glacial period.Nature, 384,447-449.
    35. Peltier, W. R., and S. Marshall,1995:Coupled energy-balance/ice-sheet model simulations of the glacial cycle: A possible connection between terminations and terrigenous dust.J. Geophys. Res., 100,14269-14289.
    36. Penner, J. E.,R. E. Dickinson, and C. A. O'Neill,1992:Effects of aerosols from biomass burning on the global radiation budget.Science, 256,1432-1433.
    37. Petit, J. R., and B. Delmonte,2009:A model for large glacial-interglacial climate-induced changes in dust and sea salt 39 concentrations in deep ice cores (central Antarctica): Palaeoclimatic implications and prospects for refining ice 40 core chronologies.Tellus, 61B,768-790.
    38. Petit, J. R., and Coauthors,1999:Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica.Nature, 399,429-436.
    39. Prospero, J. M.,P. Ginoux,O. Torres,S. E. Nicholson, and T. E. Gill,2002:Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product.Rev. Geophys., 40(1), 1002, doi: 10.1029/2000RG000095.
    40. Prospero, J. M.,J. E. Bullard, and H. Richard,2012:High-latitude dust over the North Atlantic: Inputs from Icelandic proglacial dust storms.Science, 335,1078-1082.
    41. Ramanathan, V., and P. J. Crutzen,2003:New directions: Atmospheric brown ``clouds''.Atmos. Environ., 37,4033-4035.
    42. Ridgwell, A. J., and A. Watson,2002:Feedback between aeolian dust, climate, and atmospheric CO2 in glacial time.Paleoceanography, 17(4), 1059, doi. 10.1029/2001PA000729.
    43. ,2008]R?thlisberger, R., and Coauthors,2008:The southern hemisphere at glacial terminations: Insights from the dome C ice core.Climate of the Past, 4,345-356.
    44. Schneider,von Deimling, T.,H. Held,A. Ganopolski, and S. Rahmstorf,2006a:Climate sensitivity estimated from ensemble simulations of glacial climate.Climate. Dyn., 27,149-163.
    45. Schneider,von Deimling, T.,A. Ganopolski,H. Held, and S. Rahmstorf,2006b:How cold was the last glacial maximum?Geophys. Res. Lett., 33, L14709, doi: 10.1029/2006GL026484. .
    46. Shi, G. Y.,1992:Radiative forcing and greenhouse effect due to the atmospheric trace gases.Sci. China(B), 35,217-229.
    47. Sokolik, I. N., and O. B. Toon,1996:Direct radiative forcing by anthropogenic airborne mineral aerosols.Nature, 381,681-683.
    48. Stith, J. L., and Coauthors,2009:An overview of aircraft observations from the Pacific Dust Experiment campaign.J. Geophys. Res., 114, D05207, doi: 10.1029/2008jd010924.
    49. Tjallingii, R.,M. Claussen,J.-B.W. Stuut,J. Fohlmeister,A. Jahn,T. Bickert,F. Lamy, and U. R?hl,2008:Coherent high- and low-latitude control of the northwest African hydrological balance.Nature Geoscience, 1(10),670-675.
    50. Wang, N.,T. Yao,L. G. Thompson, and M. Davis,2006:Strong negative correlation between dust event frequency and air temperature over the northern Tibetan Plateau reflected by the Malan ice core record.Annals of Glaciology, 43,29-33.
    51. Wang, X.,J. Huang,R. Zhang,B. Chen, and J. Bi,2010:Surface measurements of aerosol properties over northwest China during ARM China 2008 deployment.J. Geophys. Res., 115, D00K27, doi: 10.1029/2009JD013467.
    52. Warren, S. G., and W. J. Wiscombe,1980:A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols.J. Atmos. Sci., 37,2734-2745.
    53. Xu, B.,M. Wang,D. R. Joswiak,J. J. Cao,T. D. Yao,G. J. Wu,W. Yang, and H. B. Zhao,2009:Deposition of anthropogenic aerosols in a southeastern Tibetan glacier.J. Geophys. Res., doi: 10.1029/2008JD011-510.
    54. Yue, X.,H. Wang,H. Liao, and D. Jiang,2010:Simulation of the direct radiative effect of mineral dust aerosol on the climate at the Last Glacial Maximum.J. Climate, 24,843-858.
    55. Zeng, N.,2007:Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release.Climate of the Past, 3,135-153. doi: 10.5194/cp-3-135-2007.
    56. Zhang, X. Y.,R. Arimoto, and Z. S. An,1997:Dust emission from Chinese desert sources linked to variations in atmospheric circulation.J. Geophys. Res., 102,28041-28047.
  • [1] YUE Xu, WANG Huijun, LIAO Hong, FAN Ke, 2010: Direct Climatic Effect of Dust Aerosol in the NCAR Community Atmosphere Model Version 3 (CAM3), ADVANCES IN ATMOSPHERIC SCIENCES, 27, 230-242.  doi: 10.1007/s00376-009-8170-z
    [2] SHAO Longyi, LI Weijun, XIAO Zhenghui, SUN Zhenquan, 2008: The Mineralogy and Possible Sources of Spring Dust Particles over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 395-403.  doi: 10.1007/s00376-008-0395-8
    [3] WANG Hong, SHI Guangyu, LI Shuyan, LI Wei, WANG Biao, HUANG Yanbin, 2006: The Impacts of Optical Properties on Radiative Forcing Due to Dust Aerosol, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 431-441.  doi: 10.1007/s00376-006-0431-5
    [4] Siyu CHEN, Dan ZHAO, Jianping HUANG, Jiaqi HE, Yu CHEN, Junyan CHEN, Hongru BI, Gaotong LOU, Shikang DU, Yue ZHANG, Fan YANG, 2023: Mongolia Contributed More than 42% of the Dust Concentrations in Northern China in March and April 2023, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1549-1557.  doi: 10.1007/s00376-023-3062-1
    [5] Yongjing MA, Jinyuan XIN, Yining MA, Lingbin KONG, Kequan ZHANG, Wenyu ZHANG, Yuesi WANG, Xiuqin WANG, Yongfeng ZHU, 2017: Optical Properties and Source Analysis of Aerosols over a Desert Area in Dunhuang, Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1017-1026.  doi: 10.1007/s00376-016-6224-6
    [6] ZHANG Renjian, FU Congbin, HAN Zhiwei, ZHU Chongshu, 2008: Characteristics of Elemental Composition of PM2.5 in the Spring Period at Tongyu in the Semi-arid Region of Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 922-931.  doi: 10.1007/s00376-008-0922-7
    [7] Ning ZENG, 2003: Glacial-Interglacial Atmospheric CO2 Change--The Glacial Burial Hypothesis, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 677-693.  doi: 10.1007/BF02915395
    [8] Chen Yingyi, Chao Jiping, 1984: A TWO-DIMENSIONAL ENERGY BALANCE CLIMATE MODEL INCLUDING RADIATION AND ICE CAPS-ALBEDO FEEDBACK, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 234-255.  doi: 10.1007/BF02678136
    [9] Shou Shaowen, Li Shenshen, 1991: Diagnosis of Kinetic Energy Balance of a Decaying Onland Typhoon, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 479-488.  doi: 10.1007/BF02919270
    [10] ZHANG Renjian, HAN Zhiwei, SHEN Zhenxing, CAO Junji, 2008: Continuous Measurement of Number Concentrations and Elemental Composition of Aerosol Particles for a Dust Storm Event in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 89-95.  doi: 10.1007/s00376-008-0089-2
    [11] XIN Jinyuan, DU Wupeng, WANG Yuesi, GAO Qingxian, Zhanqing LI, WANG Mingxing, 2010: Aerosol Optical Properties Affected by a Strong Dust Storm over Central and Northern China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 562-574.  doi: 10.1007/s00376-009-9023-5
    [12] Minwei Qian, N. Loglisci, C. Cassardo, A. Longhetto, C. Giraud, 2001: Energy and Water Balance at Soil-Air Interface in a Sahelian Region, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 897-909.
    [13] WANG Linlin, GAO Zhiqiu, MIAO Shiguang, GUO Xiaofeng, SUN Ting, Maofeng LIU, Dan LI, 2015: Contrasting Characteristics of the Surface Energy Balance between the Urban and Rural Areas of Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 505-514.  doi: 10.1007/s00376-014-3222-4
    [14] SUN Shufen, ZHANG Xia, 2004: Effect of the Lower Boundary Position of the Fourier Equation on the Soil Energy Balance, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 868-878.  doi: 10.1007/BF02915589
    [15] WANG Runyuan, ZHANG Qiang, 2011: An Assessment of Storage Terms in the Surface Energy Balance of a Subalpine Meadow in Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 691-698.  doi: 10.1007/s00376-010-9152-x
    [16] Xiaoli XIA, Jinzhong MIN, Feifei SHEN, Yuanbing WANG, Chun YANG, 2019: Aerosol Data Assimilation Using Data from Fengyun-3A and MODIS: Application to a Dust Storm over East Asia in 2011, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1-14.  doi: 10.1007/s00376-018-8075-9
    [17] Lei WANG, Qing BAO, Wei-Chyung WANG, Yimin LIU, Guo-Xiong WU, Linjiong ZHOU, Jiandong LI, Hua GONG, Guokui NIAN, Jinxiao LI, Xiaocong WANG, Bian HE, 2019: LASG Global AGCM with a Two-moment Cloud Microphysics Scheme: Energy Balance and Cloud Radiative Forcing Characteristics, ADVANCES IN ATMOSPHERIC SCIENCES, , 697-710.  doi: 10.1007/s00376-019-8196-9
    [18] ZHU Zhilin, SUN Xiaomin, ZHANG Renhua, 2003: Statistical Analysis and Comparative Study of Energy Balance Components Estimated Using Micrometeorological Techniques during HUBEX/IOP 1998/99, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 285-291.  doi: 10.1007/s00376-003-0014-7
    [19] He Jinhai, T. Murakami, T. Nakazawa, 1987: ENERGY BALANCE IN 40-50 DAY PERIODIC OSCILLATION OVER THE ASIAN SUMMER MONSOON REGION DURING THE 1979 SUMMER, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 66-73.  doi: 10.1007/BF02656662
    [20] Weipeng ZHENG, Yongqiang YU, Yihua LUAN, Shuwen ZHAO, Bian HE, Li DONG, Mirong SONG, Pengfei LIN, Hailong LIU, 2020: CAS-FGOALS Datasets for the Two Interglacial Epochs of the Holocene and the Last Interglacial in PMIP4, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1034-1044.  doi: 10.1007/s00376-020-9290-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 17 November 2012
Manuscript revised: 12 March 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Impact of Dust Aerosol on Glacial-Interglacial Climate

  • 1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000; 
  • 2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics , Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Fund Project:  This research was jointly supported by the National Basic Research Program of China (Grant No. 2012CB955301), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2012-124), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT). ECMWF ERA-40 data used in this study were obtained from the ECMWF data server.

Abstract: The temperature anomaly and dust concentrations recorded from central Antarctic ice core records display a strong negative correlation. The dust concentration recorded from an ice core in central Antarctica is 5070 times higher during glacial periods than interglacial periods. This study investigated the impact of dust aerosol on glacial-interglacial climate, using a zonal energy balance model and dust concentration data from an Antarctica ice core. Two important effects of dust, the direct radiative effect and dust-albedo feedback, were considered. On the one hand, the direct radiative effect of dust significantly cooled the climate during the glacial period, with cooling during the last glacial maximum being as much as 2.05oC in Antarctica. On the other hand, dust deposition onto the ice decreased the surface albedo over Antarctica, leading to increased absorption of solar radiation, inducing a positive feedback that warmed the region by as much as about 0.9oC during the glacial period. However, cooling by the direct dust effect was found to be the controlling effect for the glacial climate and may be the major influence on the strong negative correlation between temperature and dust concentration during glacial periods.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint