Advanced Search
Article Contents

Effects of Vertical Wind Shear, Radiation and Ice Microphysics on Precipitation Efficiency during a Torrential Rainfall Event in China

Fund Project:

doi: 10.1007/s00376-013-3007-1

  • The effects of vertical wind shear, radiation and ice microphysics on precipitation efficiency (PE) were investigated through analysis of modeling data of a torrential rainfall event over Jinan, China during July 2007. Vertical wind shear affected PE by changing the kinetic energy conversion between the mean and perturbation circulations. Cloud-radiation interaction impacted upon PE, but the relationship related to cloud radiative effects on PE was not statistically significant. The reduction in deposition processes associated with the removal of ice microphysics suppressed efficiency. The relationships related to effects of vertical wind shear, radiation and ice clouds on PEs defined in cloud and surface rainfall budgets were more statistically significant than that defined in the rain microphysical budget.
  • 1. Auer, A. H. Jr., and J. D. Marwitz,1968:Estimates of air and moisture flux into hailstorms on the High Plains.J. Appl. Meteor., 7(2),196-198.
    2. Braham, R. R. Jr.,1952:The water and energy budgets of the thunderstorm and their relation to thunderstorm development.J. Meteor., 9(4),227-242.
    3. Chong, M., and D. Hauser,1989:A tropical squall line observed during the CORT 81 experiment in West Africa. Part II: Water budget.Mon. Wea. Rev., 117(4),728-744.
    4. Doswell, C. A.,III,H. E. Brooks, and R. A. Maddox,1996:Flash flood forecasting: An ingredients-based methodology.Wea. Forecasting, 11(4),560-581.
    5. Gao, S., and X. Li,2011:Can water vapor process data be used to estimate precipitation efficiency?Quart. J. Roy. Meteor. Soc., 137(657),969-978. doi:10.1002/qj.806.
    6. Grabowski, W. W.,X. Wu,M. W. Moncrieff, and W. D. Hall,1998:Cloud-resolving model of tropical cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension.J. Atmos. Sci., 55(21),3264-3282.
    7. Heymsfield, G. M., and S. Schotz,1985:Structure and evolution of a severe squall line over Oklahoma.Mon. Wea. Rev., 113(9),1563-1589.
    8. Khairoutdinov, M. F., and D. A. Randall,2003:Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities.J. Atmos. Sci., 60(4),607-625.
    9. Li, X., and S. Gao,2011: (P)recipitation Modeling and Quantitative Analysis. Springer, Dordrecht. 240pp.
    10. Li, X.,C.-H. Sui,K.-M. Lau, and M.-D. Chou,1999:Large-scale forcing and cloud-radiation interaction in the tropical deep convective regime.J. Atmos. Sci., 56(17),3028-3042.
    11. Lipps, F. B., and R. S. Hemler,1986:Numerical simulation of deep tropical convection associated with large-scale convergence.J. Atmos. Sci., 43(17),1796-1816.
    12. Shen, X.,Y. Wang, and X. Li,2011:Effects of vertical wind shear and cloud radiatve processes on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China.Quart. J. Roy. Meteor. Soc., 137(654),236-249.
    13. Sui, C.-H.,X. Li,M.-J. Yang, and H.-L. Huang,2005:Estimation of oceanic precipitation efficiency in cloud models.J. Atmos. Sci., 62(12),4358-4370.
    14. Sui, C.-H.,X. Li, and M.-J. Yang,2007:On the definition of precipitation efficiency.J. Atmos. Sci., 64(12),4506-4513. doi:10.1175/2007jas2332.1.
    15. Tao, W.-K., and S.-T. Soong,1986:The study of the response of deep tropical clouds to mesoscale processes: Three-dimensional numerical experiments.J. Atmos. Sci., 43(22),2653-2676.
    16. Tao, W.-K.,J. Simpson, and S.-T. Soong,1987:Statistical properties of a cloud ensemble: A numerical study.J. Atmos. Sci., 44(21),3175-3187.
    17. Tompkins, A. M.,2000:The impact of dimensionality on long-term cloud-resolving model simulations.Mon. Wea. Rev., 128(5),1521-1535.
    18. Wang, D.,X. Li,W.-K. Tao,Y. Liu, and H. Zhou,2009a:Torrential rainfall processes associated with a landfall of severe tropical strom Bilis (2006): A two-dimensional cloud-resolving modeling study.Atmospheric Research, 91(1),94-104.
    19. Wang, D.,X. Li,W.-K. Tao, and Y. Wang,2009b:Effects of vertical wind shear on convective development during a landfall of severe tropical storm Bilis (2006).Atmospheric Research, 94(2),270-275.
    20. Wang, D.,X. Li, and W.-K. Tao,2010a:Cloud radiative effects on responses of rainfall to large-scale forcing during a landfall of severe tropical storm Bilis (2006).Atmospheric Research, 98(2),512-525.
    21. Wang, D.,X. Li, and W.-K. Tao,2010b:Torrential rainfall responses to radiative and microphysical processes of ice clouds during a landfall of severe tropical storm Bilis (2006).Meteor. Atmos. Phys., 109(3),115-128.
    22. Weisman, M. L., and J. B. Klemp,1982:The dependence of numerically simulated convective storms on vertical wind shear and buoyancy.Mon. Wea. Rev., 110(6),504-520.
    23. Zhou,Y,2011:Effects of vertical wind shear, radiation, and ice clouds on a torrential rainfall event over Jinan, China in July 2007.J. Geophys. Res., 116(D5), D05118, doi:10.1029/2010JD014518.
    24. Zhou, Y. S., and C. G. Cui,2011:A modeling study of surface rainfall processes associated with a torrential rainfall event over Hubei, China, during July 2007.Adv. Atmos. Sci., 28(6),1459-1470. doi: 10.1007/s00376-010-0119-8.
    25. Zhou, Y. S., and X. F. Li,2011:An analysis of thermally-related surface rainfall budgets associated with convective and stratiform rainfall.Adv. Atmos. Sci., 28(5),1099-1108. doi: 10.1007/s00376-010-0031-2.
  • [1] Feng ZHANG, Xin-Zhong LIANG, ZENG Qingcun, Yu GU, and Shenjian SU, 2013: Cloud-Aerosol-Radiation (CAR) ensemble monitoring system: Overall accuracy and efficiency, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 955-973.  doi: 10.1007/s00376-012-2171-z
    [2] LI Xiaofan, SHEN Xinyong, LIU Jia, 2014: Effects of Doubled Carbon Dioxide on Rainfall Responses to Large-Scale Forcing: A Two-Dimensional Cloud-Resolving Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 525-531.  doi: 10.1007/s00376-013-3030-2
    [3] YU Jinhua, TAN Zhemin, Yuqing WANG, 2010: Effects of Vertical Wind Shear on Intensity and Rainfall Asymmetries of Strong Tropical Storm Bilis (2006), ADVANCES IN ATMOSPHERIC SCIENCES, 27, 552-561.  doi: 10.1007/s00376-009-9030-6
    [4] Qi GAO, Qingqing LI, Yufan DAI, 2020: Characteristics of the Outer Rainband Stratiform Sector in Numerically Simulated Tropical Cyclones: Lower-Layer Shear versus Upper-Layer Shear, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 399-419.  doi: 10.1007/s00376-020-9202-y
    [5] Xun LI, Noel E. DAVIDSON, Yihong DUAN, Kevin J. TORY, Zhian SUN, Qinbo CAI, 2020: Analysis of an Ensemble of High-Resolution WRF Simulations for the Rapid Intensification of Super Typhoon Rammasun (2014), ADVANCES IN ATMOSPHERIC SCIENCES, 37, 187-210.  doi: 10.1007/s00376-019-8274-z
    [6] ZONG Huijun, WU Liguang, 2015: Re-examination of Tropical Cyclone Formation in Monsoon Troughs over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 924-934.  doi: 10.1007/s00376-014-4115-2
    [7] Yufan DAI, Qingqing LI, Xinhang LIU, Lijuan WANG, 2023: A Lagrangian Trajectory Analysis of Azimuthally Asymmetric Equivalent Potential Temperature in the Outer Core of Sheared Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1689-1706.  doi: 10.1007/s00376-023-2245-0
    [8] Sarbari Ghosh, Utpal Kumar De, 1997: A Comparative Study of the Atmospheric Layers below First Lifting Condensation Level for Instantaneous Pre-Monsoon Thunderstorm Occurrence at Agartala (23o30’N, 91o15’E) and Ranchi (23o14’N, 85o14’E) of India, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 93-102.  doi: 10.1007/s00376-997-0048-3
    [9] Junlin AN, Huan LV, Min XUE, Zefeng ZHANG, Bo HU, Junxiu WANG, Bin ZHU, 2021: Analysis of the Effect of Optical Properties of Black Carbon on Ozone in an Urban Environment at the Yangtze River Delta, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1153-1164.  doi: 10.1007/s00376-021-0367-9
    [10] Jun ZOU, Jianning SUN, Aijun DING, Minghuai WANG, Weidong GUO, Congbin FU, 2017: Observation-based Estimation of Aerosol-induced Reduction of Planetary Boundary Layer Height, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1057-1068.  doi: 10.1007/s00376-016-6259-8
    [11] WANG Zhili, ZHANG Hua, SHEN Xueshun, Sunling GONG, ZHANG Xiaoye, 2010: Modeling Study of Aerosol Indirect Effects on Global Climate with an AGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1064-1077.  doi: 10.1007/s00376-010-9120-5
    [12] LIU Hongnian, JIANG Weimei, HUANG Jian, MAO Weikang, 2011: Characteristics of the Boundary Layer Structure of Sea Fog on the Coast of Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1377-1389.  doi: 10.1007/s00376-011-0191-8
    [13] LI Weiping, LUO Yong, XIA Kun, LIU Xin, 2008: Simulation of Snow Processes Beneath a Boreal Scots Pine Canopy, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 348-360.  doi: 10.1007/s00376-008-0348-2
    [14] Lei Xiaoen, 1985: EFFECT OF WIND VERTICAL SHEAR ON DIFFUSION CHARACTERISTICS IN THE MESOSCALE RANGE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 225-233.  doi: 10.1007/BF03179754
    [15] Ping YANG, Kuo-Nan LIOU, Lei BI, Chao LIU, Bingqi YI, Bryan A. BAUM, 2015: On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing, and Radiation Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 32-63.  doi: 10.1007/s00376-014-0011-z
    [16] Xiquan DONG, 2018: Preface to the Special Issue: Aerosols, Clouds, Radiation, Precipitation, and Their Interactions, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 133-134.
    [17] Lei YIN, Fan PING, Jiahua MAO, Shuanggen JIN, 2023: Analysis on Precipitation Efficiency of the “21.7” Henan Extremely Heavy Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 374-392.  doi: 10.1007/s00376-022-2054-x
    [18] LI Xiangshu, GUO Xueliang, FU Danhong, 2013: TRMM-retrieved Cloud Structure and Evolution of MCSs over the Northern South China Sea and Impacts of CAPE and Vertical Wind Shear, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 77-88.  doi: 10.1007/s00376-012-2055-2
    [19] Chen Yingyi, Chao Jiping, 1984: A TWO-DIMENSIONAL ENERGY BALANCE CLIMATE MODEL INCLUDING RADIATION AND ICE CAPS-ALBEDO FEEDBACK, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 234-255.  doi: 10.1007/BF02678136
    [20] WANG Yuesi, HU Bo, LIU Guangren, 2005: A Primary Study of the Variations of Vertical Radiation with the Beijing 325-m Meteorological Tower, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 172-180.  doi: 10.1007/BF02918507

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 07 January 2013
Manuscript revised: 07 February 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Effects of Vertical Wind Shear, Radiation and Ice Microphysics on Precipitation Efficiency during a Torrential Rainfall Event in China

  • 1. Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Fund Project:  The author thanks Dr. W.-K. TAO at NASA/GSFC for his 2D cloud-resolving model. This study was supported by projects of the National Natural Sciences Foundation of China (Grant Nos. 41075044, 41275065, and 41075079).

Abstract: The effects of vertical wind shear, radiation and ice microphysics on precipitation efficiency (PE) were investigated through analysis of modeling data of a torrential rainfall event over Jinan, China during July 2007. Vertical wind shear affected PE by changing the kinetic energy conversion between the mean and perturbation circulations. Cloud-radiation interaction impacted upon PE, but the relationship related to cloud radiative effects on PE was not statistically significant. The reduction in deposition processes associated with the removal of ice microphysics suppressed efficiency. The relationships related to effects of vertical wind shear, radiation and ice clouds on PEs defined in cloud and surface rainfall budgets were more statistically significant than that defined in the rain microphysical budget.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint