Advanced Search
Article Contents

The Southern Annular Mode (SAM) in PMIP2 Simulations of the Last Glacial Maximum

Fund Project:

doi: 10.1007/s00376-013-3179-8

  • The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southern Hemisphere (SH). How the SAM will respond increased greenhouse gas concentrations in the future remains uncertain. Understanding the variability of the SAM in the past under a colder climate such as during the Last Glacial Maximum (LGM) might provide some understanding of the response of the SAM under a future warmer climate. We analyzed the changes in the SAM during the LGM in comparison to pre-industrial (PI) simulations using five coupled ocean-atmosphere models (CCSM, FGOALS, IPSL, MIROC, HadCM) from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2). In CCSM, MIROC, IPSL, and FGOALS, the variability of the simulated SAM appears to be reduced in the LGM compared to the PI simulations, with a decrease in the standard deviation of the SAM index. Overall, four out of the five models suggest a weaker SAM amplitude in the LGM consistent with a weaker SH polar vortex and westerly winds found in some proxy records and model analyses. The weakening of the SAM in the LGM was associated with an increase in the vertical propagation of Rossby waves in southern high latitudes.
    摘要: The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southern Hemisphere (SH). How the SAM will respond increased greenhouse gas concentrations in the future remains uncertain. Understanding the variability of the SAM in the past under a colder climate such as during the Last Glacial Maximum (LGM) might provide some understanding of the response of the SAM under a future warmer climate. We analyzed the changes in the SAM during the LGM in comparison to pre-industrial (PI) simulations using five coupled ocean-atmosphere models (CCSM, FGOALS, IPSL, MIROC, HadCM) from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2). In CCSM, MIROC, IPSL, and FGOALS, the variability of the simulated SAM appears to be reduced in the LGM compared to the PI simulations, with a decrease in the standard deviation of the SAM index. Overall, four out of the five models suggest a weaker SAM amplitude in the LGM consistent with a weaker SH polar vortex and westerly winds found in some proxy records and model analyses. The weakening of the SAM in the LGM was associated with an increase in the vertical propagation of Rossby waves in southern high latitudes.
  • Anderson, R. F.,S. Ali,L. I. Bradtmiller,S. H. Nielsen,M. Q. Fleisher,B. E. Anderson, and L. H. Burckle, 2009: Wind-driven upwelling in the southern ocean and the Deglacial Rise in Atmospheric CO2. Science, 323, 1443-1448.
    Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The general Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031-2048.
    Berger, A. L., 1978: Long-term variations of caloric insolation resulting from the Earth's orbital elements. Quaternary Research, 9, 139-167.
    Braconnot, P., and Coauthors, 2007a: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum——Part 1: Experiments and large-scale features. Climate of the Past, 3, 261-277.
    Braconnot, P., and Coauthors, 2007b: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum——Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate of the Past, 3, 261-277.
    Cai, W., and T. Cowan, 2007: Trends in southern hemisphere circulation in IPCC AR4 Models over 1950-99: Ozone Depletion versus Greenhouse Forcing. J. Climate, 20, 681-693, doi: 10.1175/JCLI4028.1.
    Chapman, W. L., and J. E. Walsh, 2007: A Synthesis of Antarctic Temperatures. J. Climate, 20, 4096-4117.
    Cohen, J.,M. Barlow,P. Kushner, and K. Saito, 2007: Stratosphere-troposphere coupling and links with Eurasian land surface variability. J. Climate, 20, 5335-5343.
    Crucifix, M.,P. Braconnot,S. P. Harrison, and B. Otto-Bliesner, 2005: Second phase of paleoclimate modelling intercomparison project. Eos Trans. Amer. Geophys. Union, 86, 264.
    Dällenbach, A.,T. Blunier,J. FlȔckiger,B. Stauffer,J. Chappellaz, and D. Raynaud, 2000: Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene. Geophys. Res. Lett., 27, 1005-1008.
    De Angelis, M.,N. I. Barkov, and V. N. Petrov, 1987: Aerosol concentrations over the last climatic cycle (160 kyr) from an Antarctic ice core. Nature, 325, 318-321.
    Droset, F.,J. Renwick,B. Bhaskarane,H. Oliver, and J. McGregor, 2007: Features of the zonal mean circulation in the southern hemisphere during the Last Glacial Maximum. J. Geophys. Res., 112, D2, doi: 10.1029/2005JD006811.
    FlȔckiger, J.,A. Dällenbach,T. Blunier,B. Stauffer,T. F. Stocker,D. R. Raynaud, and J.-M. Barnola, 1999: Variations in atmospheric N2O concentration during abrupt climatic changes. Science, 285, 227-230.
    Fyfe, J. C.,G. J. Boer, and G. M. Flato, 1999: The arctic and antarctic oscillations and their projected changes under global warming. Geophys. Res. Lett., 26, 1601-1604.
    Fyfe, J. C., and O. A. Saenko, 2006: Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett., 33, L06701, doi: 10.1029/2005GL025332.
    Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273-275.
    Gillett, N. P.,T. D. Kell, and P. D. Jones, 2006: Regional climate impacts of the Southern annular Mode. Geophys. Res. Lett., 33(23),L23704, doi: 10.1029/2006GL027721.
    Gong, D Y. and S. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett, 26, 459-462.
    Gordon, C.,C. Cooper,C. A Senior,H. Banks,J. M. Gregory,T. C. Johns,J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147-168.
    Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the Annular Mode. J. Climate, 15, 3043-3057.
    Harrison, S. P.,P. Braconnot,S. Joussaume,C. D. Hewitt, and R. J. Stouffer, 2002: Fourth international workshop of the Palaeoclimate Modelling Intercomparison Project [PMIP]: launching PMIP Phase II. Eos Trans. Amer. Geophys. Union, 83, 447.
    Heusser, C. J., 1989: Southern westerlies during the Last Glacial Maximum. Quaternary Research, 31, 423-425.
    Hu, Y., and Q. Fu, 2009: Stratospheric warming in Southern Hemisphere high latitudes since 1979. Atmospheric Chemistry and Physics, 9, 4329-4340.
    Hurrell, J. W., and H. van Loon, 1994: A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus, 46, 325-338.
    Jiang, D. B., and X. M. Lang, 2010: Last glacial maximum East Asian monsoon: Results of PMIP simulations. J. Climate, 23, 5030-5038.
    Jiang, D. B.,X. M. Lang,Z. P. Tian, and D. L. Guo, 2011: Last glacial maximum climate over China from PMIP simulations. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 347-357.
    Jones, J. M., and M. Widmann, 2003: Instrument- and tree-ring-based estimates of the Antarctic Oscillation. J. Climate, 16, 3511-3524.
    Joussaume, S., and K. E. Taylor, 2000: Paleoclimate modeling intercomparison project (PMIP). Proceedings of the third PMIP workshop WCRP-111, edited by P. Braconnot, Canada, 9-24.
    K-1 Model Developers, 2004: K-1 coupled model (MIROC) description. K-1 Technical Report No. 1 H. Hasumi and S. Emori, Eds, Center for Climate System Research, University of Tokyo, 34 pp.
    Kageyama, M., and Coauthors, 2006: Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions. Quaternary Science Reviews, 25, 2082-2102.
    Karoly, D. J., 2003: Atmospheric science: Ozone and climate change. Science, 302, 236-237, doi: 10.1126/science. 1090851.
    Karoly, D. J.,R. A. Plumb, and M. F. Ting, 1989: Examples of the horizontal propagation of quasi-stationary waves. J. Atmos. Sci., 46, 2902-2811.
    Karpechko, A. Y.,N. P. Gillett,L. J. Gray, and M. Dall'Amico, 2010: Influence of ozone recovery and greenhouse gas increases on Southern Hemisphere circulation. J. Geophys. Res., 115, D22117, doi: 10.1029/2010JD014423.
    Kawamura, K., and Coauthors, 2007: Northern hemisphere forcing of climatic cycles in Antarctica over the past 360, 000 years. Nature, 448, 912-916.
    Keeling, R. F., and M. Visbeck, 2001: Antarctic stratification and glacial CO2. Nature, 412, 605-606.
    Keeley, S. P. E.,N. P. Gillett,D. W. J. Thompson,S. Solomon, and P. M. Forster, 2007: Is Antarctic climate most sensitive to ozone depletion in the middle or lower stratosphere? . Geophys. Res. Lett., 34, L22812, doi: 10.1029/2007GL031238.
    Kim, S.-J., and B. Y. Lee, 2009: Westerly winds in the Southern Ocean during the Last glacial maximum simulated in CCM3. Ocean and Polar Res., 31(4),297-304.
    Kim, S-J.,G. M.,Flato, and G. J. Boer, 2003: A coupled climate model simulation of the Last Glacial Maximum, Part 2: Approach to equilibrium. Climate Dyn., 20, 635-661.
    Kitoh, A.,S. Murakami, and H. Koide, 2001: A simulation of the Last Glacial Maximum with a coupled atmosphere-ocean GCM. Geophys. Res. Lett., 28, 2221-2224.
    Kushner, P. J.,I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 2238-2249.
    Kwok, R., and J. C. Comiso, 2002: Spatial patterns of variability in Antarctic surface temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophys. Res. Lett., 29, doi: 10.1029/2002GL015415.
    LaÎné, A., and Coauthors, 2008: Northern hemisphere storm-tracks during the Last Glacial Maximum in the PMIP2 Ocean-Atmosphere coupled models: energetic study, seasonal cycle, precipitation. Climate Dyn., 32, 593-614, doi: 10.1007/s00382-008-0391-9.
    Lee, S., and H.-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 1490-1503.
    Lefebvre, W.,H. Goosse,R. Timmermann, and T. Fichefet, 2004: Influence of the Southern Annular Mode on the sea-ice-ocean system. J. Geophys. Res., 109, C090005, doi: 10.1029/2004JC002403.
    Li, C., and D. S. Battisti, 2008: Reduced Atlantic storminess during last glacial Maximum: Evidence from a coupled climate model. J. Climate, 21(14),3561-3579, doi: 10.1175/2007 JCLI2166.1.
    LȔ, J.-M.,J. H. Ju,S.-J. Kim,J. Z. Ren, and Y. X. Zhu, 2008: Arctic Oscillation and the autumn/winter snow depth over the Tibetan Plateau. J. Geophys. Res., 113, D14117, doi: 10.1029/2007JD009567.
    LȔ, J.-M.,S.-J. Kim,A. Abe-Ouchi,Y. Yu, and R. Ohgaito, 2010: Arctic Oscillation during the mid-Holocene and last glacial maximum from PMIP2 coupled model simulations. J. Climate, 23(14), doi: 10.1175/2010JCLI3331.1.
    Markgraf, V., 1987: Paleoenvironmental changes at the northern limit of the subantarctic Nothofagus forest, Lat 37°S, Argentina. Quaternary Research, 28, 119-129.
    Markgraf, V., 1989: Southern westerlies during the Last Glacial Maximum-reply. Quaternary Research, 31, 426-432.
    Marshall, G. J., 2003: Trends in the Southern annular mode from observations and reanalyses. J. Climate, 16, 4134-4143.
    Marshall, G. J., and W. M. Connolley, 2006: Effect of changing Southern Hemisphere winter sea surface temperatures on Southern Annular Mode strength. Geophys. Res. Lett., 33(17),L17717, doi: 10.1029/2006GL026627.
    Marshall, G. J.,P. A. Stott,J. Turner,W. M. Connolley,J. C. King, and T. A. Lachlan-Cope, 2004: Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett., 31, L14205, doi: 10.1029/2004GL019952.
    Marti, O., and Coauthors, 2005: The New IPSL Climate System Model: IPSL-CM4. Rep. 26, Institute Pierre Simon Laplace des Sciences de l' Environment Global, Paris, p84.
    Masson-Delmotte, V., and Coauthors, 2006: Past temperature reconstructions from deep ice cores: relevance for future climate change. Climate of the Past, 2, 145-165.
    McCulloch, R. D.,M. J. Bently,R. S. Purves,N. R. J. Hulton,D. E. Sugden, and C. M. Clapperton, 2000: Climate inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science, 15, 409-417.
    Meredith, M. P.,P. L. Woodworth,C. W. Hughes, and V. Stepanov, 2004: Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in Southern Annular Mode. Geophys. Res. Lett, 31, doi: 10.1029/2004GL 021169.
    Monaghan, A. J.,D. H. Bromwich,W. Chapman, and J. C. Comiso, 2008: Recent variability and trends of Antarctic near-surface temperature. J. Geophys. Res., 113, D04105, doi: 10.1029/2007JD009094.
    Monnin, E.,A. IndermȔhle,A. Dällenbach,J. FlȔckiger,B. Stauffer,T. F. Stocker,D. Raynaud, and J. M. Barnola, 2001: Atmospheric CO2 concentration over the last glacial termination. Science, 291, 112-114.
    Moreno, P. I.,T. V. Lowell, G. L. Jacobson Jr., and G. H. Denton, 1999: Vegetation and climate changes during the last glacial maximum and last termination in the Chilean Lake District: A case study from Canal de la Puntilla (41°S). Geografiska Annaler Series A, 81, 285-311.
    Murakami, S.,R. Ohgaito,A. Abe-Ouchi,M. Crucifix, and B. L. Otto-Bliesner, 2008: Global-scale energy and freshwater balance in glacial climate: A comparison of three PMIP2 LGM simulations. J. Climate, 21(19),5008-5033.
    O'Donnell, R.,N. Lewis,S. Mcintyre, and I. Condon, 2011: Improved methods for PCA-based reconstructions: Case study using Steig et al. (2009) Antarctic temperature reconstruction. J. Climate, 24, 2099-2115.
    Otto-Bliesner, B. L.,E. Brady,G. Clauzet,R. Tomas,S. Levis, and Z. Kothavala, 2006a: Last glacial maximum and holocene climate in CCSM. J. Climate, 19, 2526-2544.
    Otto-Bliesner, B. L.,R. Tomas,E. C. Brady,C. Ammann,Z. Kothavala, and G. Clauzet, 2006b: Climate sensitivity of moderate- and low-resolution versions of CCSM to preindustrial forcings. J. Climate, 19(11),2567-2583.
    Otto-Bliesner, B. L.,C. D. Hewitt,T. M. Marchitto,E. Brady,A. Abe-Ouchi,M. Crucifix,S. Murakami, and S. L. Weber, 2007: Last Glacial Maximum ocean thermohaline circulation: PMIP2 model inter-comparison and data constraints. Geophys. Res. Lett., 34, L12706. doi: 10.1029/2007GL029475.
    Otto-Bliesner, B. L., and Coauthors, 2009: A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum. Climate Dyn., 32(6),799-815, doi: 10.1007/s00382-008-0509-0.
    Pausata, F. S. R.,C. Li,J. J. Wettstein,K. H. Nisancioglu, and D. S. Battisti, 2009: Changes in atmospheric variability in a glacial climate and the impacts on proxy data: a model intercomparison. Climate of the Past, 5, 489-502.
    Petit, J. R.,M. Briat, and A. Royer, 1981: Ice age aerosol content from East Antarctic ice core samples and past wind strength. Nature, 293, 391-394.
    Petit, J. R., and Coauthors, 1999: Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature, 399, 429-436.
    Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42(3),217-229.
    Polvani, L. M.,M. Previdi, and C. Deser, 2011: Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys. Res. Lett., 38, L04707, doi: 10.1029/2011GL046712.
    Ramstein, G.,M. Kageyama,J. Guiot,H. Wu,C. Hély,G. Krinner, and S. Brewer, 2007: How cold was Europe at the Last Glacial Maximum? A synthesis of the progress achieved since the first PMIP model-data comparison. Climate of the Past, 3, 331-339.
    Ringler, T. D., and K. H. Cook, 1999: Understanding the seasonality of orographically forced stationary waves: Interaction between mechanical and thermal forcing. J. Atmos. Sci., 56, 1154-1174.
    Rojas, M., and Coauthors, 2008: The Southern westerlies during the last glacial maximum in PMIP2 simulations. Climate Dyn., 32(4), doi: 10.1007/s00382-008-0421-7.
    Saito, K.,J. Cohen, and D. Entekhabi, 2001: Evolution of atmospheric response to early-season Eurasian snow cover anomalies. Mon. Wea. Rev., 129, 2746-2760.
    Schneider, D. P.,C. Deser, and Y. Okumura, 2012: An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dyn., 38(1),323-347, doi: 10.1007/s00382-010-0985-x.
    Shindell, D. T., and G. A. Schmidt, 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett., 31, L18209, doi: 10.1029/2004 GL020724.
    Sigman, D. M., and E. A. Boyle, 2000: Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859-869.
    Sigman, D. M.,M. P. Haon, and G. H. Haug, 2010: The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature, 466, 47-55.
    Silvestri, G. E., and C. S. Vera, 2003: Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett., 30(21),2115-2118, doi: 10.1029/2003GL018277.
    Sime, L. C., and Coauthors, 2013: Glacial-interglacial changes in Southern Hemisphere westerly winds: Model-data comparison Quaternary Science Review, 64 104-120, doi: 10.1016/j.quascirev.2012.12.008.
    Son, S.-W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the southern hemisphere westerly jet. Science, 320, 1486-1489.
    Son, S.-W., and Coauthors, 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multi-model assessment. J. Geophys. Res., 115, D00M07, doi: 10.1029/2010JD014271.
    Steig, E. J.,D. P. Schneider,S. D. Rutherford,M. E. Mann,J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459-463, doi: 10.1038/nature07669.
    Stenni, B.,V. Masson-Delmotte,S. Johnsen,J. Jouzel,A. Longinelli,E. Monnin,R. RȌthlisberger, and E. Selmo, 2001: An oceanic cold reversal during the last deglaciation. Science, 293, 2074-2077.
    Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation, part I: Month-to-month variability. J. Climate, 13, 1000-1016.
    Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895-899.
    Toggweiler, J. R., 2009: Shifting westerlies. Science, 323, 1434-1435.
    Toggweiler, J. R.,J. L. Russell, and S. R. Carson, 2006: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21, PA2005, doi: 10.1029/2005PA001154.
    Turner, J., and Coauthors, 2005: Antarctic climate change during the last 50 years. Int. J. Climate, 25, 279-294.
    Turner, J.,T. Phillips,J. S. Hosking,G. J. Marshall, and A. Orr, 2013: The Amundsen Sea low. Int. J. Climatology, 33, 1818-1829.
    Weber, S. L., and Coauthors, 2007: The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Climate of the Past, 3, 51-64.
    Wyroll, K.-H.,B. Dong, and P. Valdes, 2000: On the position of Southern Hemisphere westerlies at the Last Glacial Maximum: an outline of AGCM simulation results and evaluation of their implications. Quaternary Science Reviews, 19, 881-898.
    Yanase, W., and A. Abe-Ouchi, 2007: The LGM surface climate and atmospheric circulation over East Asia and the North Pacific in PMIP2 coupled model simulations. Climate of the Past, 3, 439-451.
    Yu, Y. Q.,X. H. Zhang,Y. F. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21(3),444-455, doi: 10.1007/BF02915571.
  • [1] Fei ZHENG, Jianping LI, Shuailei YAO, 2021: Intermodel Diversity of Simulated Long-term Changes in the Austral Winter Southern Annular Mode: Role of the Southern Ocean Dipole, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 375-386.  doi: 10.1007/s00376-020-0241-1
    [2] Chibuike Chiedozie IBEBUCHI, Cameron C. LEE, 2024: Circulation Pattern Controls of Summer Temperature Anomalies in Southern Africa, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 341-354.  doi: 10.1007/s00376-023-2392-3
    [3] YUE Xu, WANG Huijun, 2008: The Springtime North Asia Cyclone Activity Index and the Southern Annular Mode, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 673-679.  doi: 10.1007/s00376-008-0673-5
    [4] FENG Juan, LI Jianping, Yun LI, ZHU Jianlei, XIE Fei, 2015: Relationships among the Monsoon-like Southwest Australian Circulation, the Southern Annular Mode, and Winter Rainfall over Southwest Western Australia, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1063-1076.  doi: 10.1007/s00376-014-4142-z
    [5] Fei ZHENG, Jianping LI, Fred KUCHARSKI, Ruiqiang DING, Ting LIU, 2018: Dominant SST Mode in the Southern Hemisphere Extratropics and Its Influence on Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 881-895.  doi: 10.1007/s00376-017-7162-7
    [6] JIANG Dabang, ZHANG Zhongshi, 2006: Paleoclimate Modelling at the Institute of Atmospheric Physics, Chinese Academy of Sciences, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 1040-1049.  doi: 10.1007/s00376-006-1040-z
    [7] Fei ZHENG, Jianping LI, Ruiqiang DING, 2017: Influence of the Preceding Austral Summer Southern Hemisphere Annular Mode on the Amplitude of ENSO Decay, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1358-1379.  doi: 10.1007/s00376-017-6339-4
    [8] ZHENG Weipeng, and YU Yongqiang, 2013: Paleoclimate Simulations of the Mid-Holocene and Last Glacial Maximum by FGOALS, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 684-698.  doi: 10.1007/s00376-012-2177-6
    [9] Shangrong ZHOU, Fei LIU, 2024: Southern Hemisphere Volcanism Triggered Multi-year La Niñas during the Last Millennium, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 587-592.  doi: 10.1007/s00376-023-3254-8
    [10] Shuang LIU, Kaiheng HU, Weiming LIU, Paul A. CARLING, 2022: Hydro-climatic Characteristics of Yarlung Zangbo River Basin since the Last Glacial Maximum, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 415-426.  doi: 10.1007/s00376-021-1150-7
    [11] Mozheng WEI, Jorgen S. FREDERIKSEN, 2005: Finite-Time Normal Mode Disturbances and Error Growth During Southern Hemisphere Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 69-89.  doi: 10.1007/BF02930871
    [12] QIN Danyu, LI Bo, and HUANG Yong, 2014: Transition from the Southern Mode of the Mei-yu Front Cloud System to Other Leading Modes, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 948-961.  doi: 10.1007/s00376-013-3045-8
    [13] SUN Dan, XUE Feng, ZHOU Tianjun, 2013: Impacts of Two Types of El Nio on Atmospheric Circulation in the Southern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1732-1742.  doi: 10.1007/s00376-013-2287-9
    [14] LI Chun, SUN Jilin, 2015: Role of the Subtropical Westerly Jet Waveguide in a Southern China Heavy Rainstorm in December 2013, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 601-612.  doi: 10.1007/s00376-014-4099-y
    [15] Jianhuang QIN, Ruiqiang DING, Zhiwei WU, Jianping LI, Sen ZHAO, 2017: Relationships between the Extratropical ENSO Precursor and Leading Modes of Atmospheric Variability in the Southern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 360-370.  doi: 10.1007/s00376-016-6016-z
    [16] David H. BROMWICH, Matthew A. LAZZARA, Arthur M. CAYETTE, Jordan G. POWERS, Kirstin WERNER, John J. CASSANO, Steven R. COLWELL, Scott CARPENTIER, Xun ZOU, 2022: The 16th Workshop on Antarctic Meteorology and Climate and 6th Year of Polar Prediction in the Southern Hemisphere Meeting, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 536-542.  doi: 10.1007/s00376-021-1384-4
    [17] Anastasia J. TOMANEK, Matthew A. LAZZARA, David E. MIKOLAJCZYK, Taylor P. NORTON, Isabella I. ONSI, David H. BROMWICH, Mariana F. LITELL, 2023: The 17th Workshop on Antarctic Meteorology and Climate and 7th Year of Polar Prediction in the Southern Hemisphere Meeting, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1722-1729.  doi: 10.1007/s00376-023-3049-y
    [18] Qianhui MA, Chunyan ZHANG, Donghai WANG, Zihao PANG, 2024: Summer Atmospheric Water Cycle under the Transition Influence of the Westerly and Summer Monsoon over the Yarlung Zangbo River Basin in the Southern Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 830-846.  doi: 10.1007/s00376-023-3094-6
    [19] Weipeng ZHENG, Yongqiang YU, Yihua LUAN, Shuwen ZHAO, Bian HE, Li DONG, Mirong SONG, Pengfei LIN, Hailong LIU, 2020: CAS-FGOALS Datasets for the Two Interglacial Epochs of the Holocene and the Last Interglacial in PMIP4, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1034-1044.  doi: 10.1007/s00376-020-9290-8
    [20] Ning ZENG, 2003: Glacial-Interglacial Atmospheric CO2 Change--The Glacial Burial Hypothesis, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 677-693.  doi: 10.1007/BF02915395

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 17 September 2013
Manuscript revised: 04 December 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Southern Annular Mode (SAM) in PMIP2 Simulations of the Last Glacial Maximum

  • 1. Korea Polar Research Institute, KORDI, PO Box 32, Incheon 406-840, Korea
  • 2. Chinese Academy of Meteorological Sciences, Beijing 100081
Fund Project:  We would like to thank the PMIP2 members for providing the data. Hyesun CHOI at the Korea Polar Research Institute (KOPRI) is acknowledged for her help in proofreading the manuscript. This study was supported by the ``Investigation of Climate Change Mechanism by Observation and Simulation of Polar Climate Change for the Past and Present'' project (PE14010) of the KOPRI, the Special Project of Basic Science and Technology (2011FY120300), and the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3061 (PN13010).This work was also supported by the Jiangsu Collaborative Innovation Center for Climate Change.

Abstract: The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southern Hemisphere (SH). How the SAM will respond increased greenhouse gas concentrations in the future remains uncertain. Understanding the variability of the SAM in the past under a colder climate such as during the Last Glacial Maximum (LGM) might provide some understanding of the response of the SAM under a future warmer climate. We analyzed the changes in the SAM during the LGM in comparison to pre-industrial (PI) simulations using five coupled ocean-atmosphere models (CCSM, FGOALS, IPSL, MIROC, HadCM) from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2). In CCSM, MIROC, IPSL, and FGOALS, the variability of the simulated SAM appears to be reduced in the LGM compared to the PI simulations, with a decrease in the standard deviation of the SAM index. Overall, four out of the five models suggest a weaker SAM amplitude in the LGM consistent with a weaker SH polar vortex and westerly winds found in some proxy records and model analyses. The weakening of the SAM in the LGM was associated with an increase in the vertical propagation of Rossby waves in southern high latitudes.

摘要: The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southern Hemisphere (SH). How the SAM will respond increased greenhouse gas concentrations in the future remains uncertain. Understanding the variability of the SAM in the past under a colder climate such as during the Last Glacial Maximum (LGM) might provide some understanding of the response of the SAM under a future warmer climate. We analyzed the changes in the SAM during the LGM in comparison to pre-industrial (PI) simulations using five coupled ocean-atmosphere models (CCSM, FGOALS, IPSL, MIROC, HadCM) from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2). In CCSM, MIROC, IPSL, and FGOALS, the variability of the simulated SAM appears to be reduced in the LGM compared to the PI simulations, with a decrease in the standard deviation of the SAM index. Overall, four out of the five models suggest a weaker SAM amplitude in the LGM consistent with a weaker SH polar vortex and westerly winds found in some proxy records and model analyses. The weakening of the SAM in the LGM was associated with an increase in the vertical propagation of Rossby waves in southern high latitudes.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint