Advanced Search
Article Contents

A Review of Atmospheric Electricity Research in China

Fund Project:

doi: 10.1007/s00376-014-0003-z

  • The importance of atmospheric electricity research has been increasingly recognized in recent decades. Research on atmospheric electricity has been actively conducted since the 1980s in China. Lightning physics and its effects, as important branches of atmospheric electricity, have received more attention because of their significance both in scientific research and lightning protection applications. This paper reviews atmospheric electricity research based primarily on ground-based field experiments at different regions in China in the last decade. The results described in this review include physics and effects of lightning, rocket-triggered lightning and its physical processes of discharge, thunderstorm electricity on the Tibetan Plateau and its surrounding areas, lightning activity associated with severe convective storms, the effect and response of lightning to climate change, numerical simulation of thunderstorm electrification and lightning discharge, lightning detection and location techniques, and transient luminous events above thunderstorms.
    摘要: The importance of atmospheric electricity research has been increasingly recognized in recent decades. Research on atmospheric electricity has been actively conducted since the 1980s in China. Lightning physics and its effects, as important branches of atmospheric electricity, have received more attention because of their significance both in scientific research and lightning protection applications. This paper reviews atmospheric electricity research based primarily on ground-based field experiments at different regions in China in the last decade. The results described in this review include physics and effects of lightning, rocket-triggered lightning and its physical processes of discharge, thunderstorm electricity on the Tibetan Plateau and its surrounding areas, lightning activity associated with severe convective storms, the effect and response of lightning to climate change, numerical simulation of thunderstorm electrification and lightning discharge, lightning detection and location techniques, and transient luminous events above thunderstorms.
  • 1 Cao D. J.,G. S. Zhang,T. Zhang,Y. H. Wang, 2008: Analyses on VHF radiation of Cloud-to-Ground flashes in Pingliang loess plateau. Plateau Meteorology, 27( 2), 365-372. (in Chinese)
    2 Cao D. J.,X. S. Qie,S. Duan,Y. J. Xuan,D. F. Wang, 2012: Lightning discharge process based on short-baseline lightning VHF radiation source locating system. Acta Physica Sinica, 61( 6), 069202. (in Chinese)
    3 Chen C. P.,X. S. Qie,Q. Zhang,G. S. Zhang,T. Zhang, 2005: Analysis of VHF radiations of discharging of Cloud-to-Ground flashes. Proceedings of the CSEE, 25( 19), 122-126. (in Chinese)
    4 Cui H.,X. Qie,Q. Zhang,T. Zhang,G. Zhang,J. Yang, 2009: Intracloud discharge and the correlated basic charge structure of a thunderstorm in Zhongchuan, a Chinese Inland Plateau region. Atmospheric Research, 91( 2-4), 425-429.
    5 Dai, J.,Coauthors, 2009: A comparison of lightning activity and convective indices over some monsoon-prone areas of China. Atmospheric Research, 91, 438-452.
    6 Dong W. S.,X. S. Liu,Y. Yu,Y. J. Zhang, 2001: Broadband interferometer observations of a triggered lightning. Chinese Sci. Bull., 46( 18), 1561-1565.
    7 Dong W. S.,X. S. Liu,Y. J. Zhang,G. S. Zhang, 2002: Observations on the leader-return stroke of cloud-to-ground lightning with the broadband interferometer. Sci. China: Earth Sci., 45( 3), 259-269.
    8 Dong W. S.,X. S. Liu,C. X. Chen,Y. J. Zhang,H. B. Wang, 2003: Broadband interferometer observations of the bi-directional breakdown process in natural lightning. Chinese J. Geophys., 46( 3), 449-456.
    9 Fan X. P.,G. S. Zhang,Y. H. Wang,Y. J. Li,T. ZhangB. Wu, 2014: Analyzing the transmission structures of long continuing current processes from negative ground flashes on the Qinghai-Tibetan Plateau. J. Geophys. Res., 119( 5), 2050-2063. doi:10.1002/2013JD020402
    10 Feng G. L.,X. S. Qie,T. Yuan,Y. J. Zhou, 2006a: A case study of cloud-to-ground lightning activities in hailstorms under cold eddy synoptic situation. Acta Meteorologica Sinica, 20( 4), 489-499.
    11 Feng G. L.,X. S. Qie,Y. J. Zhou, 2006b: A case study on characteristics of lightning activity in a mesoscale convective system. Plateau Meteorology, 25( 2), 220-228. (in Chinese)
    12 Feng G. L.,X. S. Qie,T. Yuan,S. Z. Niu, 2007: Analysis on lightning activity and precipitation structure of hailstorms. Science China-Earth Science, 50( 4), 629-639.
    13 Feng G. L.,X. S. Qie,S. J. Wu, 2008: Cloud-to-ground lightning characteristics of hail clouds in Shandong province. Chinese. J. Atmos. Sci., 32( 2), 289-299. (in Chinese)
    14 Feng G. L.,X. S. Qie,J. Wang,D. L. Gong, 2009: Lightning and Doppler radar observations of a squall line system. Atmospheric Research, 91( 2-4), 466-478.
    15 Franz R. C.,R. J. Nemzek,J. R. Winckler, 1990: Television image of a large upward electrical discharge above a thunderstorm system. Science, 249(4964), 48-51.
    16 Gou X. Q.,Y. J. Zhang,X. S. Qie,W. S. Dong, 2006: Characterization of radiation field of return stroke of cloud-to-ground lightning with local effective Holder exponent. Proceedings of the CSEE, 26( 3), 75-78. (in Chinese)
    17 Gou X. Q.,Y. J. Zhang,W. S. Dong,X. S. Qie, 2007: Wavelet-based multifractal analysis of the radiation field of first return stroke in cloud-to-ground discharge. Chinese J. Geophys., 50( 1), 101-105. (in Chinese)
    18 Gou X. Q.,M. L. Chen,Y. J. Zhang,W. S. Dong,X. S. Qie, 2009: Wavelet multiresolution based multifractal analysis of electric fields by lightning return strokes. Atmospheric Research, 91, 410-415.
    19 Guo F. X.,Y. J. Zhang,X. S. Qie,M. H. Yan, 2003: Numerical simulation of different charge structures in thunderstorm. Plateau Meteorology, 22( 3), 268-274. (in Chinese)
    20 Guo F. X.,M. H. Yan,Y. J. Zhang, 2006: A model study of lightning-generated NOx (LNOx) and it's transportation. Plateau Meteorology, 25( 2), 229-235. (in Chinese)
    21 Guo F. X.,Y. J. Zhang,M. H. Yan, 2007: A numerical study of the charge structure in thunderstorm in Nagqu area of the Qinghai-Xizang Plateau. Chinese J. Atmos. Sci., 31( 1), 28-36. (in Chinese)
    22 Jiang R.,X. Qie,C. Wang,J. Yang,Q. Zhang,J. Wang,D. Liu, 2011: Lightning M-components with peak current in the range of kilo amperes and their mechanism. Acta Physica Sinica, 60( 7), 079201. (in Chinese)
    23 Jiang R.,X. Qie,C. Wang,J. Yang, 2013a: Propagating features of upward positive leaders in the initial stage of rocket-triggered lightning. Atmospheric Research, 129-130, 90-96.
    24 Jiang R.,X. Qie,J. Yang,C. Wang,Y. Zhao, 2013b: Characteristics of M-component in rocket-triggered lightning and a discussion on its mechanism. Radio Sci., 48, 597-606. doi:10.1002/rds.20065.
    25 Jiang R.,Z. Wu,X. Qie,D. Wang,M. Liu, 2014a: High-speed video evidence of a dart leader with bidirectional development. Geophys. Res. Lett., 41, doi:10.1002/2014GL060585.
    26 Jiang R. B.,X. S. Qie,Z. J. Wu,D. F. Wang,M. Y. Liu,G. P. Lu,D. X. Liu, 2014b: Characteristics of upward lightning from a 325-m-tall meteorology tower. Atmospheric Research, 149, 111-119, doi:10.1016/j.atmosres.2014.06.007.
    27 Kong X. Z.,X. S. Qie,G. S. Zhang,T. Zhang, 2005: Research on stepped-leader and return-stroke of the cloud-to-ground lightning with multiple-grounding-point in the same return stroke. Proceedings of the CSEE, 25( 22), 142-147. (in Chinese)
    28 Kong X. Z.,X. S. Qie,Y. Zhao,T. Zhang,G. S. Zhang,W. S. Dong, 2006: An analysis of discharge processes of one cloud-to-ground lightning flash on the Qinghai-Xizang Plateau. Chinese J. Geophys., 49( 4), 993-1000. (in Chinese)
    29 Kong X. Z.,X. S. Qie,Y. Zhao, 2008: Characteristics of downward leader in a positive cloud-to-ground lightning flash observed by high-speed video camera and electric field changes. Geophys. Res. Lett., 35, L05816, doi:10.1029/2007 GL032764.
    30 Kong X. Z.,X. S. Qie,Y. Zhao,T. Zhang, 2009: Characteristics of negative lightning flashes presenting multiple-ground terminations on a millisecond-scale. Atmospheric Research, 91( 2-4), 381-386.
    31 Li D. S.,Q. L. Zhang,Z. H. Wang,T. Liu, 2014: Computation of lightning horizontal field over the two-dimensional rough ground by using the three-dimensional FDTD. IEEE Transactions on Electromagnetic Compatibility, 56(1), 143-148, doi:10.1109/TEMC.2013.2266479.
    32 Li W. L.,D. X. Liu,X. S. Qie,S. M. Fu,S. Duan,Y. C. Chen, 2012: Evaluation of noninductive charging mechanisms and simulation of charge characteristic structure in the early thunderstorm based on RAMS V6.0. Acta Physica Sinica, 61(5), 059202, doi:10.7498/aps.61.059202. (in Chinese)
    33 Li Y. J.,G. S. Zhang,J. Wen,D. H. Wang,Y. H. Wang,T. Zhang,X. P. Fan,B. Wu, 2013: Electrical structure of a Qinghai-Tibetan Plateau thunderstorm based on three-dimensional lightning mapping. Atmospheric Research, 127, 90-115.
    34 Liu D. X.,X. S. Qie,G. L. Feng,S. J. Wu, 2008: Analyses on lightning temporal and spatial characteristics in the severe convective weather in north China. Plateau Meteorology, 27( 2), 358-364. (in Chinese)
    35 Liu D. X.,G. L. Feng,S. J. Wu, 2009: Temporal and spatial characteristics of cloud-to-ground lightning of hailstorms over north China. Atmospheric Research, 91( 2-4), 459-465.
    36 Liu D. X.,X. S. Qie,Y. J. Xiong,G. L. Feng, 2011: Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing. Adv. Atmos. Sci., 28(4), 866-878, doi: 10.1007/s00376-010-0001-8.
    37 Liu D. X.,X. S. Qie,L. X. Pan,L. Peng, 2013a: Some characteristics of lightning activity and radiation source distribution in a squall line over north China. Atmospheric Research, 132-133, 423-433.
    38 Liu D. X.,X. S. Qie,Z. C. Wang,X. K. Wu,L. X. Pan, 2013b: Characteristics of lightning radiation source distribution and charge structure of squall line. Acta Physica Sinica., 62( 21), 219 201-219 201.
    39 Liu D. X.,X. S. Qie,L. Peng,W. L. Li, 2014: Charge structure of a summer thunderstorm in North China: Simulation using a regional atmospheric model system. Adv. Atmos. Sci., 31, 1022-1034, doi: 10.1007/s00376-014-3078-7.
    40 Liu H. Y.,W. S. Dong,T. Wu,D. Zheng,Y. J. Zhang, 2012: Observation of compact intracloud discharges using VHF broadband interferometers. J. Geophys. Res., 117, D01203, doi:10.1029/2011JD016185.
    41 LÜ, F., B. Zhu, H. Zhou, V. A. Rakov, W. Xu,Z. Qin, 2013: Observations of compact intracloud lightning discharges in the northernmost region (51°N) of China. J. Geophys. Res. Atmos., 118, 4458-4465, doi:10.1002/jgrd.50295.
    42 LÜ W., D. Wang, N. Takagi, V. Rakov, M. Uman,M. Miki., 2008a: Characteristics of the optical pulses associated with a downward branched stepped leader. J. Geophys. Res., 113, D21206, doi:10.1029/2008JD010231.
    43 LÜ, W. T.,Coauthors, 2008b: Analysis of channel luminosity characteristics in rocket-triggered lightning. Acta Meteorologica Sinica, 22( 3), 362-374.
    44 Lu, W. T.,Coauthors, 2009: Simultaneous optical and electrical observations on the initial processes of altitude-triggered negative lightning. Atmospheric Research, 9, 353-359.
    45 Lu W.,L. Chen,Y. Zhang,Y. Ma,Y. Gao,Q. Yin,S. Chen,Z. Huang,Y. Zhang, 2012: Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou. J. Geophys. Res., 117, D19211, doi:10.1029/ 2012JD018035.
    46 Lu W.,L. Chen,Y. Ma,V. A. Rakov,Y. Gao,Y. Zhang,Q. Yin,Y. Zhang, 2013: Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader. Geophys. Res. Lett., 40, 5531-5535, doi:10.1002/2013GL058060.
    47 Ma M.,S. C. Tao,B. Y. Zhu,W. T. Lu, 2005a: Climatological distribution of lightning density observed by satellites in China and its circumjacent regions. Science China-Earth Science, 48( 2), 219-229.
    48 Ma M.,S. C. Tao,B. Y. Zhu,W. T. Lu,Y. B. Tan, 2005b: Response of global lightning activity to air temperature variation. Chinese Science Bulletin, 50( 22), 2640-2644.
    49 Ma M.,S. C. Tao,B. Y. Zhu,W. T. Lu, 2005c: The anomalous variation of the lightning activity in southern China during the 1997/98 El Niño event. Science China-Earth Science, 48( 9), 1537-1547.
    50 Mansell E. R.,D. R. MacGorman,C. L. Ziegler,J. M. Straka, 2002: Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res., 107(D9), doi:10.1029/2000JD000244.
    51 Ouyang Y. H.,P. Yuan,X. S. Qie,H. B. Wang,X. D. Jia,H. M. Zhang, 2006: Temperature study on lightning return stroke in the coastal area of Guangdong. Spectroscopy and Spectral Analysis, 26( 11), 1988-1992.
    52 Pan L. X.,X. S. Qie,D. X. Liu,D. F. Wang,J. Yang, 2009: The lighting activities in super typhoons over the Northwest Pacific. Science China-Earth Science, 53( 8), 1241-1248.
    53 Pan L. X.,D. X. Liu,X. S. Qie,D. F. Wang,R. P. Zhu, 2013: Land-sea contrast in the lightning diurnal variation as observed by the WWLLN and LIS/OTD data. Acta Meteorologica Sinica, 27, 591-600.
    54 Pan L. X.,X. S. Qie,D. F. Wang, 2014: Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean. Adv. Atmos. Sci., 31, 581-592??doi: 10.1007/s00376-013-3115-y.
    55 Qie X. S.,X. Z. Kong, 2007: Progression features of a stepped leader process with four grounded leader branches. Geophys. Res. Lett., 34, L06809, doi:10.1029/2006GL028771.
    56 Qie X.,S. Soula,S. Chauzy, 1994: Influence of ion attachment on the vertical distribution of the electric field and charge density below a thunderstorm. Annales Geophysicae, 12, 1218-1228.
    57 Qie X.,Y. Yu,X. Liu,C. Guo,D. Wang,T. Watanabe,T. Ushio, 2000a: Charge analysis on lightning discharges to the ground in Chinese inland plateau (verge of Tibet). Ann. Geophys., 18( 10), 1340-1348.
    58 Qie X. S.,Y. Yu,X. S. Liu,G. S. Zhang,D. H. Wang,T. Watanabe,N. Takagi,T. O. Ushio, 2000b: K-Type breakdown process of intracloud discharge in Chinese inland plateau. Progress in Natural Science, 10( 8), 607-611.
    59 Qie X. S.,Y. Yu,H. B. Wang,C. H. Zhang, 2001: Analysis on some features of ground flashes in Chinese inland plateau. Plateau Meteorology, 20( 4), 395-401. (in Chinese)
    60 Qie X.,Y. Yu,C. Guo,P. Laroche,G. Zhang,Q. Zhang, 2002a: Some features of stepped and dart-stepped leaders near the ground in natural negative cloud-to-ground lightning discharges. Ann. Geophys., 20( 6), 863-870.
    61 Qie X.,Y. Yu,D. Wang,H. Wang,R. Chu, 2002b: Characteristics of cloud-to-ground lightning in Chinese Inland Plateau. J. Meteor. Soc. Japan, 80( 4), 745-754.
    62 Qie X. S.,R. Toumi,T. Yuan, 2003a: Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor. J. Geophys. Res., 108(D17), 4551, do: 10.1029/2002JD003304.
    63 Qie X. S.,Y. J. Zhou,T. Yuan, 2003b: Global lightning activities and their regional differences observed from the satellite. Chinese J. Geophys., 46( 6), 743-750. (in Chinese)
    64 Qie X. S.,R. Toumi,Y. J. Zhou, 2003c: Lightning activity on the central Tibetan Plateau and its response to convective available potential energy. Chinese Sci. Bulletin, 48( 4), 296-299.
    65 Qie X. S.,T. Yuan,Y. R. Xie,Y. M. Ma, 2004: Spatial and temporal distribution of lightning activities over the Tibetan Plateau. Chinese J. Geophys., 47( 6), 997-1002. (in Chinese)
    66 Qie, X,Coauthors, 2005a: The possible charge structure of thunderstorm and lightning discharges in northeastern verge of Qinghai-Tibetan Plateau. Atmospheric Research, 76( 1-4), 231-246.
    67 Qie X. S.,T. L. Zhang,C. P. Chen,G. S. Zhang,T. Zhang,W. Z. Wei, 2005b: The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. Geophys. Res. Lett., 32, L05814, doi:10.1029/2004GL022162.
    68 Qie X. S.,Q. L. Zhang,Y. J. Zhou, 2007: Artificially triggered lightning and its characteristic discharge parameters in two severe thunderstorms. Science China-Earth Science, 50( 8), 1241-1250.
    69 Qie, X. S.,Coauthors, 2009a: Characteristics of artificially triggered lightning during Shandong artificial triggering lightning experiment (SHATLE). Atmospheric Research, 91( 2-4), 310-315.
    70 Qie X. S.,T. L. Zhang,G. S. Zhang,T. Zhang,X. Z. Kong, 2009b: Electrical characteristics of thunderstorms in different plateau regions of China. Atmospheric Research, 91( 2-4), 244-249.
    71 Qie X. S.,J. Yang,R. B. Jiang,J. F. Wang,D. X. Liu,C. X. Wang,Y. J. Xuan, 2010: A new-model rocket for artificially triggering lightning and its first triggering lightning experiment. Chinese J. Atmos. Sci., 34( 5), 937-946. (in Chinese)
    72 Qie X. S.,R. B. Jiang,C. X. Wang,J. Yang,J. F. Wang,D. X. Liu, 2011: Simultaneously measured current, luminosity, and electric field pulses in a rocket-triggered lightning flash. J. Geophys. Res., 116, D10102, doi:10.1029/2010JD015331.
    73 Qie X.,Z. Wang,D. Wang,M. Liu,Y. Xuan, 2013: Characteristics of positive cloud-to-ground lightning in DaHinggan Ling forest region at relatively high latitude, northeastern China. J. Geophys. Res. Atmos., 118, 13 393-13 404, doi:10.1002/2013JD020093.
    74 Qie X.,R. Jiang,J. Yang, 2014a: Characteristics of current pulses in rocket-triggered lightning. Atmospheric Research, 135-136, 322-329, doi: http://dx.doi.org/10.1016/j.atmosres. 2012.11.012.
    75 Qie X. S.,R. P. Zhu,T. Yuan,X. K. Wu,W. L. Li,D. X. Liu, 2014b: Application of total-lightning data assimilation in a mesoscale convective system based on the WRF model. Atmospheric Research, 145-146, 255-266, doi:10.1016/ j.atmosres.2014.04.012
    76 Qiu S.,B.-H. Zhou,L.-H. Shi,W.-S. Dong,Y.-J. Zhang,T.-C. Gao, 2009: An improved method for broadband interferometric lightning location using wavelet transforms. J. Geophys. Res., 114, D18211, doi:10.1029/2008JD011655.
    77 Rakov V. A.,R. Thottappillil,M. A. Uman,P. P. Barker, 1995: Mechanism of the lighting M component. J. Geophys. Res., 100, 25 701-27 710.
    78 Rison W. R.,R. J. Thomas,P. R. Krehbiel,T. Hamlin,J. Harlin, 1999: A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett., 26, 3573-3576.
    79 Saunders C. P. R.,W. D. Keith,R. P. Mitzeva.,1991: The effect of liquid water on thunderstorm charging. J. Geophys. Res., 96( D6), 11 007-11 017.
    80 Su, H. T.,Coauthors, 2003: Gigantic jets between a thundercloud and the ionosphere. Nature, 423, 974-976
    81 Sun A. P.,H.-Y. Chun,J.-J. Baik,M. H. Yan, 2002: Influence of electrification on microphysical and dynamical processes in a numerically simulated thunderstorm. Quart. J. Appl. Meteor., 41, 1112-1127.
    82 Sun Z. L.,X. S. Qie,M. Y. Liu,D. J. Cao,D. F. Wang, 2013: Lightning VHF radiation location system based on short-baseline TDOA technique——Validation in rocket-triggered lightning. Atmospheric Research, 129-130, 58-66, doi:10.1016/j.atmosres.2012.11.010.
    83 Takahashi T.,1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536-1548.
    84 Tan Y. B.,S. C. Tao,B. Y. Zhu, 2006a: Fine-resolution simulation of the channel structures and propagation features of intra-cloud lightning. Geophys. Res. Lett., 33, L09809, doi:10.1029/2005GL025523.
    85 Tan Y. B.,S. C. Tao,B. Y. Zhou,M. Ma,W. T. Lu, 2006b: Numerical simulation of the bi-level and branched structure of intra-cloud lightning flashes. Science China-Earth Science, 49( 6), 661-672.
    86 Tan Y. B.,S. C. Tao,B. Y. Zhou,M. Ma,W. T. Lu, 2007: A simulation of the effects of intra-cloud lightning discharges on the charges and electrostatic potential distributions in a thundercloud. Chinese J. Geophys., 50( 4), 916-930. (in Chinese)
    87 Tan Y.,S. Tao,Z. Liang,B. Zhu, 2014: Numerical study on relationship between lightning types and distribution of space charge and electric potential. J. Geophys. Res. Atmos., 119, 1003-1014, doi:10.1002/2013JD019983.
    88 Tao S. C.,Y. B. Tan,B. Y. Zhu,M. Ma,W. T. Lu, 2009: Fine-resolution simulation of cloud-to-ground lightning and thundercloud charge transfer. Atmospheric Research, 91, 360-370.
    89 Toumi R.,X. S. Qie, 2004: Seasonal variation of lightning on the Tibetan Plateau: A spring anomaly. Geophys. Res. Lett., 31, L04115, doi:10.1029/2003GL018930.
    90 Wang C. X.,R. B. Jiang,J. Yang,M. Y. Liu, 2012a: Current subsidiary peak in triggered lightning strokes. Radio Sci., 47, RS4002, doi:10.1029/2011RS004933.
    91 Wang C. X.,X. S. Qie,R. B. Jiang,J. Yang, 2012b: Propagating properties of a upward positive leader in a negative triggered lightning. Acta Physica Sinica, 61( 3), 039203. (in Chinese)
    92 Wang D. F.,X. S. Qie,T. Yuan,G. S. Zhang,T. Zhang,T. L. Zhang,Q. L. Zhang, 2009a: An analysis of the initial stage of intracloud lightning using the pulse location technique based on the fast electric field change. Acta Meteorologica Sinica, 23( 6), 772-781.
    93 Wang J.,P. Yuan,F. X. Guo,X. S. Qie,Y. H. Ouyang,Y. J. Zhang, 2009b: The spectra and temperature of cloud lightning discharge channel. Science China-Earth Science, 52( 7), 907-912.
    94 Wang Y. H.,G. S. Zhang,T. Zhang,D. J. Cao, 2007: Submicrosecond VHF radiation character on broadband wrap in lightning. Proceedings of CSEE, 27( 9), 41-45. (in Chinese)
    95 Wang Y.,G. Zhang,X. Qie,D. Wang,T. Zhang,Y. Zhao,Y. Li,T. Zhang, 2012: Characteristics of compact intracloud discharges observed in a severe thunderstorm in northern part of China. J. Atmos. Sol.-Terr. Phys., 84-85, 7-14.
    96 Wang Y. H.,G. S. Zhang,T. Zhang,Y. J. Li,B. Wu,T. L. Zhang, 2013: Interaction between adjacent lightning discharges in clouds. Adv. Atmos. Sci., 30(4), 1106-1116, doi: 10.1007/s00376-012-2008-9.
    97 Wu T.,W. S. Dong,Y. J. Zhang,T. Wang, 2011: Comparison of positive and negative compact intracloud discharges. J. Geophys. Res., 116, D03111, doi:10.1029/2010JD015233.
    98 Wu T.,W. S. Dong,Y. J. Zhang,T. Funaki,S. Yoshida,T. Morimoto,T. Ushio,Z. Kawasaki, 2012: Discharge height of lightning narrow bipolar events. J. Geophys. Res., 117, D05119, doi:10.1029/2011JD017054.
    99 Xie Y. R.,X. S. Qie,F. X. Guo,M. Baker, 2005: Numerical simulation of the effect of liquid water content and ice crystal concentration on lightning flash frequency. Plateau Meteorology, 24( 4), 598-603. (in Chinese)
    100 Xiong Y. J.,X. S. Qie,F. X. Guo, 2005: Temporal and spatial characteristics of South American lightning activities and their relationship with SST in east Pacific. Plateau Meteorology, 24( 3), 396-403. (in Chinese)
    101 Xiong Y. J.,X. S. Qie,Y. J. Zhou,T. Yuan,T. L. Zhang, 2006: Regional responses of lightning activities to relative humidity of the surface. Chinese J. Geophys., 49( 2), 367-374. (in Chinese)
    102 Yang J.,X. S. Qie,G. S. Zhang,H. B. Wang, 2008a: Magnetic field measuring system and current retrieval in artificially triggering lightning experiment. Radio Sci., 43, RS2011, doi:10.1029/2007RS003753.
    103 Yang J.,X. S. Qie,J. G. Wang,Y. Zhao,Q. L. Zhang,T. Yuan,Y. J. Zhou,G. L. Feng, 2008b: Observation of the lightning-induced voltage in the horizontal conductor and its simulation. Acta Physica Sinica, 57( 3), 1968-1975. (in Chinese)
    104 Yang J.,X. S. Qie,G. S. Zhang,Y. Zhao,T. Zhang, 2008c: Red sprites over thunderstorms in the coast of Shandong province, China. Chinese Science Bulletin, 53( 7), 1079-1086.
    105 Yang J.,X. Qie,Q. Zhang,Y. Zhao,G. Feng,T. Zhang,G. Zhang, 2009: Comparative analysis of the initial stage in two artificially-triggered lightning flashes. Atmospheric Research, 91, 393-398.
    106 Yang J.,X. S. Qie,G. S. Zhang,Q. L. Zhang,G. L. Feng,Y. Zhao,R. B. Jiang, 2010: Characteristics of channel base currents and close magnetic fields in triggered flashes in SHATLE. J. Geophys. Res., 115, D23102, doi:10.1029/2010JD014420.
    107 Yang J.,G. L. Feng, 2012: A gigantic jet event observed over a thunderstorm in mainland China. Chinese Science Bulletin, 57( 36), 4791-4800.
    108 Yang J.,M. R. Yang,C. Liu,G. L. Feng, 2013a: Case studies of sprite-producing and non-sprite-producing summer thunderstorms. Adv. Atmos. Sci, 30(6), 1786-1808, doi: 10.1007/s00376-013-2120-5.
    109 Yang J.,X. S. Qie,G. L. Feng, 2013b: Characteristics of one sprite-producing summer thunderstorm. Atmospheric Research, 127, 90-115.
    110 Yuan P.,X. S. Liu,Y. J. Zhang,L. Y. Xie,Z. C. Dong, 2002: Theoretical calculation for the lifetimes of NII related to lightning process. Acta Physica Sinica, 51( 11), 2495-2502. (in Chinese)
    111 Yuan P.,X. S. Liu,Y. J. Zhang,X. S. Qie,G. S. Zhang,H. B. Wang, 2004a: Spectral study on lightning return stroke in plateau area. Chinese J. Geophys., 47( 1), 42-46. (in Chinese)
    112 Yuan P.,X. S. Liu,Y. J. Zhang, 2004b: NII Ion spectra related to lightning discharges. Spectroscopy and Spectral Analysis, 24( 3), 288-291. (in Chinese)
    113 Yuan P.,X. S. Qie,S. H. LÜ, G. Y. Chen,G. S. Zhang, 2006: The spectral properties of an intense lightning return stroke. Spectroscopy and Spectral Analysis, 26( 4), 733-737. (in Chinese)
    114 Yuan T.,X. S. Qie, 2004: Spatial and temporal distributions of lightning activities in China from satellite observation. Plateau Meteorology, 23( 4), 488-494. (in Chinese)
    115 Yuan T.,X. S. Qie, 2008: Study on lightning activity and precipitation characteristics before and after the onset of the South China Sea summer monsoon. J. Geophys Res., 13, D14101, doi:10.1029/2007JD009382.
    116 Yuan T.,X. S. Qie, 2010: TRMM-based study on lightning activity and its relationship with precipitation structure of a squall line in south China. Chinese J. Atmos. Sci., 34( 1), 58-70. (in Chinese)
    117 Zhang G. S.,Y. X. Zhao,X. S. Qie,T. Zhang,Y. H. Wang,C. P. Chen, 2008: Observation and study on the whole process of cloud-to-ground lightning using narrowband radio interferometer. Science China-Earth Science, 51( 5), 694-708. doi: 10.1007/s11430-008-0049-9.
    118 Zhang G. S.,Y. H. Wang,X. S. Qie,T. Zhang,Y. X. Zhao,Y. J. Li,D. J. Cao, 2010: Using lightning locating system based on time-of-arrival technique to study three-dimensional lightning discharge processes. Science China-Earth Science, 53, 591-602. doi: 10.1007/s11430-009-0116-x.
    119 Zhang H. M.,P. Yuan,S. H. LÜ,Y. H. Ouyang, 2007a: Study on electron density of lightning return stroke. Plateau Meteorology, 26( 2), 264-269. (in Chinese)
    120 Zhang Q. L.,X. S. Qie, 2003: Reconstruction of return stroke radiation field waveforms and estimation of cloud-to-ground discharges parameters. Plateau Meteorology, 22( 3), 252-258. (in Chinese)
    121 Zhang Q.,X. S. Qie,G. S. Zhang, 2003a: Short-baseline time-of-arrival lightning radiation detection system and preliminary location result. Plateau Meteorology, 22( 3), 226-234. (in Chinese)
    122 Zhang Q. L.,X. S. Qie,H. B. Wang, 2003b: Characteristics of the radiation fields from return strokes in plateau thunderstorms. Proceedings of thesand CSEE, 23( 9), 94-98. (in Chinese)
    123 Zhang Q. L.,X. S. Qie,H. B. Wang,C. P. Chen,G. S. Zhang,T. Zhang, 2005: Characteristics and numerical simulation of electric field waveforms produced by close negative cloud-to-ground flashes. Proceedings of the CSEE, 25( 18), 126-130. (in Chinese)
    124 Zhang, Q. L.,Coauthors, 2006: Electric field characteristics of leader and return in triggered lightning. High Power Laser and Particle Beams, 18( 12), 2004-1010. (in Chinese)
    125 Zhang Q. L.,X. S. Qie,X. Z. Kong,Y. J. Zhou,J. Yang,T. L. Zhang,G. L. Feng,Q. F. Xiao, 2007b: Comparative analysis on return stroke current of triggered and natural lightning flashes. Proceedings of the CSEE, 27( 6), 67-71.
    126 Zhang Q.,X. Qie,Z. Wang,T. Zhang,Y. Zhao,J. Yang,X. Kong, 2009a: Characteristics and simulation of lightning current waveforms during one artificially triggered lightning. Atmospheric Research, 91( 2-4), 387-392.
    127 Zhang Q. L.,X. S. Qie,Z. H. Wang,T. L. Zhang,J. Yang, 2009b: Simultaneous observation on electric field changes at 60 m and 550 m from altitude-triggered lightning flashes. Radio Sci., 44, RS1011, doi:10.1029/2008RS003866.
    128 Zhang Q. L.,X. D. Liu,J. Yang,R. B. Jiang,Z. H. Wang,J. C. Bian, 2011a: The characteristics and simulation of close leader/return stroke field change waveforms. Radio Sci., 46, RS1017, doi:10.1029/2010RS004469.
    129 Zhang Q.,J. Yang,M. Liu,Z. Wang, 2011b: Measurements and simulation of the M-component current and simultaneous electromagnetic fields at 60 m and 550 m. Atmospheric Research, 99, 537-545.
    130 Zhang Q. L.,J. Yang,X. Q. Jing,D. S. Li,Z. H. Wang, 2012a: Propagation effect of a fractal rough ground boundary on the lightning-radiated vertical electric field. Atmospheric Research, 104, 202-208, doi:10.1016/j.atmosres.2011.10.009.
    131 Zhang Q. L.,D. S. Li,Y. F. Fan.,2012b: Examination of the Cooray-Rubinstein (C-R) formula for a mixed propagation path by using FDTD. J. Geophys. Res., 117(D15309), doi:10.1029/2011 JD017331.
    132 Zhang Q. L.,X. Q. Jing,J. Yang,D. S. Li,X. Tang, 2012c: Numerical simulation of the lightning electromagnetic fields along a rough and ocean-land mixed propagation path. J. Geophys. Res., 117, D20304, doi:10.1029/2012JD017851.
    133 Zhang Q. L.,J. Yang,D. S. Li,Z. H. Wang, 2012d: Propagation effects of a fractal rough ocean surface on the vertical electric field generated by lightning return strokes. Journal of Electrostatics, 70(1), 54-59, doi:10.1016/j.elstat.2011. 10.003.
    134 Zhang Q. L.,L. Zhang,X. Tang,J. G. Gao, 2014a: An approximate formula for estimating the peak value of lightning-induced overvoltage considering the stratified conducting ground. IEEE Transactions on Power Delivery, 29(2), 884-889, doi:10.1109/TPWRD.2013.2281982.
    135 Zhang Q. L.,L. X. He,T. T. Ji,W. H. Hou, 2014b: On the field-to-current conversion factors for lightning strike to tall objects considering the finitely conducting ground. J. Geophys. Res., 119(13), doi:10.1002/2014JD021496.
    136 Zhang Q. L.,X. Tang,J. G. Gao,L. Zhang,D. S. Li, 2014c: The influence of the horizontally stratified conducting ground on the lightning-induced voltages. IEEE Transactions on Electromagnetic Compatibility, 56( 2), 435-443. doi:10.1109/TEMC.2013.2284929.
    137 Zhang R.,G. S. Zhang,Y. J. Li,Y. H. Wang,B. Wu,H. Yu,Y. X. Liu, 2014d: Estimate of NOx production in the lightning channel based on three-dimensional lightning locating system. Science China-Earth Science, 57( 7), 1613-1625.
    138 Zhang T. L.,X. S. Qie,T. Yuan,Y. J. Xiong,T. Zhang, 2004: The temporal and spatial distribution of lightning activities along the Qinghai-Tibet railroad. Plateau Meteorology, 23( 5), 673-677. (in Chinese)
    139 Zhang T. L.,X. Qie,T. Yuan,G. Zhang,T. Zhang,Y. Zhao, 2009c: Charge source of cloud-to-ground lightning and charge structure of a typical thunderstorm in the Chinese Inland Plateau. Atmospheric Research, 92( 4), 475-480.
    140 Zhang T. L.,X. S. Qie,M. H. Yan,Y. Zhao,G. S. Zhang,T. Zhang,Y. H. Wang, 2009d: A preliminary analysis on formation of electrical characteristics of thunderstorm in different altitude regions in Chinese inland plateau. Plateau Meteorology, 28( 5), 1006-1017. (in Chinese)
    141 Zhang T. L.,T. Zhang,Y. Zhao,X. Z. Kong,Y. H. Wang, 2010: Characteristics of thunderstorms and lightning flashes in the Chinese inland plateau. Sciences in Cold and Arid Regions, 2( 3), 271-277.
    142 Zhang W. J., Y. J. Zhang, D. Zheng,X. J. Zhou, 2012e: Lightning distribution and eyewall outbreaks in tropical cyclones during landfall. Mon. Wea. Rev., 140, 3573-3586.
    143 Zhang Y. J.,W. S. Dong,G. S. Zhang,X. S. Qie, 2003c: Characteristics of the leading processes to the artificial induced lightning in the air. Chinese J. Geophys., 46( 4), 446-449. (in Chinese)
    144 Zhang Y. J.,W. S. Dong,G. S. Zhang,H. F. Zhang,C. P. Chen,T. Zhang, 2004a: Study of charge structure and radiation characteristic of intracloud discharge in thunderstorms of Qinghai-Tibet Plateau. Science China-Earth Science, 47( S1), 108-114.
    145 Zhang Y. J.,A. P. Sun,M. H. Yan,F. X. Guo,X. S. Qie,M. Y. Huang, 2004b: Numerical modeling for effects of electric activity during thunderstorms upon the growth of hail particles. Chinese J. Geophys., 47( 1), 25-32. (in Chinese)
    146 Zhang Y. J.,Q. Meng,P. R. Krehbiel,X. S. Liu,M. H. Yan,X. J. Zhou, 2006a: Spatiotemporal characteristics of positive cloud-to-ground lightning discharges and bidirectional leader of the lightning. Science China-Earth Science, 49, 212-224.
    147 Zhang Y. J.,Q. Meng,W. T. Lu,P. R. Krehbiel,X. S. Liu,X. J. Zhou, 2006b: Charge structures and cloud-to-ground lightning discharges characteristics in two supercell thunderstorms. Chinese Science Bulletin, 51( 2), 198-212.
    148 Zhang Y. J.,W. T. LÜ, J. Li,W. S. Dong,D. Zheng,S. D. Chen, 2009e: Luminosity characteristics of leaders in natural cloud-to-ground lightning flashes. Atmospheric Research, 91( 2-4), 326-332.
    149 Zhang Y. J.,Q. Meng,W. T. Lu,M. Ma,D. Zheng,P. R. Krehbiel, 2009f: Positive charge region in lower part of thunderstorm and preliminary breakdown process of negative cloud-to-ground lightning. Acta Meteorologica Sinica, 23( 1), 95-104.
    150 Zhang, Y. J.,Coauthors, 2014e: Experiments of artificially triggered lightning and its application in Conghua, Guangdong, China. Atmospheric Research, 135, 330-343. doi:10.1016/j.atmosres.2013.02.010.
    151 Zhao Y.,Y. J. Zhang,W. S. Dong,H. F. Zhang,C. P. Chen,T. Zhang, 2004: Preliminary analysis of characteristics of lightning in the Nagqu area of the Qinghai-Xizang plateau. Chinese J. Geophys., 47( 3), 405-410. (in Chinese)
    152 Zhao, Y.,Coauthors, 2009a: Analysis on the parameters of the current waveforms of triggered lightning. Acta Physica Sinica, 58( 9), 6616-6625. (in Chinese)
    153 Zhao Y.,X. S. Qie,M. L. Chen,X. Z. Kong,G. S. Zhang,T. L. Zhanng,G. L. Feng, 2011: Characteristic of M-component in artificially-initiated triggered lightning. Plateau Meteorology, 30( 2), 508-517. (in Chinese)
    154 Zhao Z. K.,Q. L. Zhang, 2009: Influence of channel tortuosity on the lightning return stroke electromagnetic field in the time domain. Atmospheric Research, 91( 1-4), 404-409.
    155 Zhao, Z. K.,Coauthors, 2009b: Electric field soundings and the charge structure within an isolated thunderstorm. Chinese Science Bulletin, 55, 872-876.
    156 Zheng D.,Y. J. Zhang,M. Ma,Q. Meng,W. T. LÜ,2007: Simulation study on the influence of atmospheric stratification on lightning activity. Acta Meteorologica Sinica, 65( 4), 622-632.(in Chinese)
    157 Zheng D.,Y. J. Zhang,Q. Meng,W. T. Lu,X. Y. Yi, 2009: Total lightning characteristics and electric structure evolution in a hailstorm. Acta Meteorologica Sinica, 23( 2), 233-249. (in Chinese)
    158 Zhou Y. J.,X. S. Qie, 2002: Mechanism and estimation of lightning generated NOx in Chinese inland area. Plateau Meteorology, 21( 5), 501-508. (in Chinese)
    159 Zhou Y. J.,X. S. Qie,T. Yuan, 2004: Spatial and temporal distributions of NOx produced by lightning in East Asian region. Plateau Meteorology, 23( 5), 667-672. (in Chinese)
    160 Zhou Y. J.,S. Soula,V. Pont,X. S. Qie, 2005: NOx ground concentration at a station at high altitude in relation to cloud-t-ground lightning flashes. Atmospheric Research, 75, 47-69.
    161 Zhou Z. M.,X. L. Guo, 2009: A three dimensional modeling study of multi-layer distribution and formation processes of electric charges in a severe thunderstorm. Chinese J. Atmos. Sci., 33( 3), 600-620. (in Chinese)
    162 Zhu B. Y.,M. Ma,S. C. Tao, 2003: Measurement and comparison of VHF/VLF radiations of preliminary breakdown of Cloud-to-Ground and intracloud flashes. Plateau Meteorology, 22( 3), 239-245. (in Chinese)
    163 Zhu B. Y.,S. C. Tao,Y. B. Tan, 2007: Initial observations of the lightning narrow bipolar pulses with very powerful VHF radiation. Acta Meteorologica Sinica, 65( 1), 124-130. (in Chinese)
    164 Zhu B. Y.,H. L. Zhou,M. Ma,S. C. Tao, 2010a: Observations of narrow bipolar events in East China. J. Atmos. Sol.-Terr. Phys., 72( 2-3), 271-278.
    165 Zhu B. Y.,H. L. Zhou,M. Ma,F. LÜ,S. C. Tao, 2010b: Estimation of channel characteristics of narrow bipolar events based on the transmission-line model. J. Geophys. Res., 115, D19105, doi:10.1029/2009JD012021.
    166 Zhu B. Y.,H. L. Zhou,R. Thottappillil,V. Rakov, 2014: Simultaneous observations of electric field changes, wideband magnetic field pulses, and VHF emissions associated with K processes in lightning discharges. J. Geophys. Res., 119(6), 2699-2710, doi:10.1002/2013JD021006.

  • [1] Xiushu QIE, Yijun ZHANG, 2019: A Review of Atmospheric Electricity Research in China from 2011 to 2018, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 994-1014.  doi: 10.1007/s00376-019-8195-x
    [2] Weitao LYU, Dong ZHENG, Yang ZHANG, Wen YAO, Rubin JIANG, Shanfeng YUAN, Dongxia LIU, Fanchao LYU, Baoyou ZHU, Gaopeng LU, Qilin ZHANG, Yongbo TAN, Xuejuan WANG, Yakun LIU, Shaodong CHEN, Lyuwen CHEN, Qingyong LI, Yijun ZHANG, 2023: A Review of Atmospheric Electricity Research in China from 2019 to 2022, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1457-1484.  doi: 10.1007/s00376-023-2280-x
    [3] D.B. Jadhav, A.L. Londhe, S. Bose, 1996: Observations of NO2 and O3 during Thunderstorm Activity Using Visible Spectroscopy, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 359-374.  doi: 10.1007/BF02656853
    [4] QIE Xiushu, 2012: Progresses in the Atmospheric Electricity Researches in China during 2006--2010, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 993-1005.  doi: 10.1007/s00376-011-1195-0
    [5] Abhay SRIVASTAVA, Dongxia LIU, Chen XU, Shanfeng YUAN, Dongfang WANG, Ogunsua BABALOLA, Zhuling SUN, Zhixiong CHEN, Hongbo ZHANG, 2022: Lightning Nowcasting with an Algorithm of Thunderstorm Tracking Based on Lightning Location Data over the Beijing Area, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 178-188.  doi: 10.1007/s00376-021-0398-2
    [6] Huaming ZHANG, Yijun ZHANG, Weitao LYU, Yang ZHANG, Qi QI, Yanfeng FAN, 2019: Analysis of the Spectral Characteristics of Triggered Lightning, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1265-1272.  doi: 10.1007/s00376-019-9006-0
    [7] Qi LI, Fengxia GUO, Xiaoyu JU, Ze LIU, Mingjun GAN, Kun ZHANG, Binbin CAI, 2023: Estimation of Lightning-Generated NOx in the Mainland of China Based on Cloud-to-Ground Lightning Location Data, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 129-143.  doi: 10.1007/s00376-022-1329-6
    [8] LIU Dongxia, QIE Xiushu, PENG Liang, LI Wanli, 2014: Charge Structure of a Summer Thunderstorm in North China: Simulation Using a Regional Atmospheric Model System, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1022-1034.  doi: 10.1007/s00376-014-3078-7
    [9] Tianxue ZHENG, Yongbo TAN, Yiru WANG, 2021: Numerical Simulation to Evaluate the Effects of Upward Lightning Discharges on Thunderstorm Electrical Parameters, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 446-459.  doi: 10.1007/s00376-020-0154-z
    [10] Wanli LI, Xiushu QIE, Shenming FU, Debin SU, Yonghai SHEN, 2016: Simulation of Quasi-Linear Mesoscale Convective Systems in Northern China: Lightning Activities and Storm Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 85-100.  doi: 10.1007/s00376-015-4170-3
    [11] WANG Yanhui, ZHANG Guangshu, ZHANG Tong, LI Yajun, WU Bin, and ZHANG Tinglong, 2013: Interaction between adjacent lightning discharges in clouds, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1106-1116.  doi: 10.1007/s00376-012-2008-9
    [12] Zou Yousuo, 1989: Conditions for Producing and Maintaining Plasma Ball Lightning in the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 62-74.  doi: 10.1007/BF02656918
    [13] Fengxia GUO, Xiaoyu JU, Min BAO, Ganyi LU, Zupei LIU, Yawen LI, Yijun MU, 2017: Relationship between Lightning Activity and Tropospheric Nitrogen Dioxide and the Estimation of Lightning-produced Nitrogen Oxides over China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 235-245.  doi: 10.1007/s00376-016-6087-x
    [14] PAN Lunxiang, QIE Xiushu, WANG Dongfang, , 2014: Lightning Activity and Its Relation to the Intensity of Typhoons over the Northwest Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 581-592.  doi: 10.1007/s00376-013-3115-y
    [15] Zhu Cuijuan, Li Xingsheng, Ye Zhuojia, 1984: AN ANALYSIS OF THE STRUCTURE OF THUNDERSTORM IN THE ATMOSPHERIC BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 105-118.  doi: 10.1007/BF03187621
    [16] Dongxia LIU, Xiushu QIE, Yichen CHEN, Zhuling SUN, Shanfeng YUAN, 2020: Investigating Lightning Characteristics through a Supercell Storm by Comprehensive Coordinated Observations over North China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 861-872.  doi: 10.1007/s00376-020-9264-x
    [17] Dong ZHENG, Yijun ZHANG, Qing MENG, Luwen CHEN, Jianru DAN, 2016: Climatology of Lightning Activity in South China and Its Relationships to Precipitation and Convective Available Potential Energy, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 365-376.  doi: 10.1007/s00376-015-5124-5
    [18] Anjing HUANG, Gaopeng LU, Hongbo ZHANG, Feifan LIU, Yanfeng FAN, Baoyou ZHU, Jing YANG, Zhichao WANG, 2018: Locating Parent Lightning Strokes of Sprites Observed over a Mesoscale Convective System in Shandong Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1396-1414.  doi: 10.1007/s00376-018-7306-4
    [19] Yang LI, Yubao LIU, Rongfu SUN, Fengxia GUO, Xiaofeng XU, Haixiang XU, 2023: Convective Storm VIL and Lightning Nowcasting Using Satellite and Weather Radar Measurements Based on Multi-Task Learning Models, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 887-899.  doi: 10.1007/s00376-022-2082-6
    [20] Manman MA, Xiaogang HUANG, Jianfang FEI, Chi ZHANG, Chao LI, Xiaoping CHENG, 2022: Analysis of the Winter Cloud-to-Ground Lightning Activity and Its Synoptic Background in China during 2010–20, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 985-998.  doi: 10.1007/s00376-021-1260-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 08 May 2014
Manuscript revised: 15 July 2014
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Review of Atmospheric Electricity Research in China

    Corresponding author: QIE Xiushu; 
  • 1. Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;
  • 2. Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Sciences, Beijing 100081;
  • 3. College of Atmospheric Science, Lanzhou University, Gansu 730000;
  • 4. College of Atmospheric Physics, Nanjing University of Information Technology, Nanjing 210044;
  • 5. Laboratory for Climate Environment and Disasters of Western China, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000;
  • 6. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026;
  • 7. College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225;
  • 8. Shandong Research Institute of Meteorology, Jinan 250031
Fund Project:  This research was supported by the National Key Basic Research and Development (973) Program of China (2014CB441400) and the National Natural Science Foundation of China (Grant No. 41475002).

Abstract: The importance of atmospheric electricity research has been increasingly recognized in recent decades. Research on atmospheric electricity has been actively conducted since the 1980s in China. Lightning physics and its effects, as important branches of atmospheric electricity, have received more attention because of their significance both in scientific research and lightning protection applications. This paper reviews atmospheric electricity research based primarily on ground-based field experiments at different regions in China in the last decade. The results described in this review include physics and effects of lightning, rocket-triggered lightning and its physical processes of discharge, thunderstorm electricity on the Tibetan Plateau and its surrounding areas, lightning activity associated with severe convective storms, the effect and response of lightning to climate change, numerical simulation of thunderstorm electrification and lightning discharge, lightning detection and location techniques, and transient luminous events above thunderstorms.

摘要: The importance of atmospheric electricity research has been increasingly recognized in recent decades. Research on atmospheric electricity has been actively conducted since the 1980s in China. Lightning physics and its effects, as important branches of atmospheric electricity, have received more attention because of their significance both in scientific research and lightning protection applications. This paper reviews atmospheric electricity research based primarily on ground-based field experiments at different regions in China in the last decade. The results described in this review include physics and effects of lightning, rocket-triggered lightning and its physical processes of discharge, thunderstorm electricity on the Tibetan Plateau and its surrounding areas, lightning activity associated with severe convective storms, the effect and response of lightning to climate change, numerical simulation of thunderstorm electrification and lightning discharge, lightning detection and location techniques, and transient luminous events above thunderstorms.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint