Advanced Search
Article Contents

Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique

Fund Project:

doi: 10.1007/s00376-014-3165-9

  • The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 m) channel imagery, where the traditional cloud motion wind technique fails. A new tracer selection procedure, which we call the temporal difference technique, is demonstrated in this paper. This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature (TB) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions. The TB difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model. The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions: tropical, midlatitude summer, U.S. standard, and midlatitude winter. The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the TB wind. This technique is valid over cloud-free ocean areas. The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD), speed bias (BIAS), mean vector difference (MVD), standard deviation (SD), and root-mean-square error (RMSE), when compared with the wind field of NCEP reanalysis data and rawinsonde observations.
  • Choi, H., R. Bindschadler, 2004: Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision. Remote Sens. Environ., 91(3), 237-242.
    Dunion, J. P., C. S. Velden, 2002: Application of surface-adjusted GOES low-level cloud-drift winds in the environment of Atlantic tropical cyclones. Part I: Methodology and validation. Mon. Wea. Rev., 130, 1333-1346.
    Eigenwillig, N., H. Fischer, 1982: Determination of midtropospheric wind vectors by tracking pure water vapor structures in METEOSAT water vapor image sequences. Bull. Amer. Meteor. Soc., 63, 44-58.
    Goerss, J. S., C. S. Velden, J. D. Hawkins, 1998: The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part II: NOGAPS forecasts. Mon. Wea. Rev., 126, 1219-1227.
    Hu, X. Q., N. M. Lu, P. Zhang, 2007: Remote sensing and detection of dust storm in China using the thermal bands of geostationary meteorological satellite. Journal of Applied Meteorological Science, 18(4), 266-275. (in Chinese)
    Kelly, G., T. McNally, J.-N. Thépaut, M. Szyndel, 2004: OSEs of all main data types in the ECMWF operational system. Proc. of Third WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction (Alpbach, Austria), WMO/TD No. 1228, World Meteorological Organization, Geneva, Switzerland, 63-94.
    Laurent, H., 1993: Wind extraction from METEOSAT water vapor channel image data. J. Appl. Meteor., 32, 1124-1133.
    LeMarshall, J. F., C. Spinoso, N. R. Pescod, G. A. Mills, 1996: Estimation and assimilation of hourly high special resolution wind vectors based on GMS-5 observations. Australian Meteorological Magazine, 45, 275-284.
    Leslie, L. M., J. F. LeMarshall, R. P. Morison, C. Spinoso, R. J. Purser, N. Pescod, R. Seecamp, 1998: Improved hurricane track forecasting from the continuous assimilation of high quality satellite wind data. Mon. Wea. Rev., 126, 1248-1258.
    Ma, F., Q. Zhang, N. Guo, J. Zhang, 2007: The study of cloud detection with multi-channel data of satellite. Chinese J. Atmos. Sci., 31(2), 120-128. (in Chinese)
    Menzel, W. P., 2001: Cloud tracking with satellite imagery: From the pioneering work of Ted Fujita to the present. Bull. Amer. Meteor. Soc., 82, 33-47.
    Nieman, S. J., W. P. Menzel, C. M. Hayden, D. Gray, S. T. Wanzong, C. S. Velden, J. Daniels, 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78, 1121-1133.
    Palmén, E., C. W. Newton, 1969: Atmospheric Circulation Systems: Their Structure and Physical Interpretation. Academic Press, New York, 609 pp.
    Rabin, R. M., S. F. Corfidi, J. C. Brunner, C. E. Hane, 2004: Detecting winds aloft from water vapor satellite imagery in the vicinity of storms. Weather, 59, 251-257.
    Schmetz, J., O. M. Turpeinen, 1988: Estimation of the upper tropospheric relative humidity field from METFOSAT water vapor image data. J. Appl. Meteor., 27, 889-899.
    Schneider, E. K., B. P. Kirtman, R. S. Lindzen, 1999: Tropospheric water vapor and climate sensitivity. J. Atmos. Sci., 56, 1649-1658.
    Sheng, P. X., J. T. Mao, J. G. Li, 2003: Atmospheric Physics. Peking University Press, Beijing, 522 pp. (in Chinese)
    Simpsona, J. J., J. I. Gobata, 1995: Improved cloud detection in GOES scenes over the oceans. Remote Sens. Environ., 52(3), 79-94.
    Sun, D.-Z., I. M. Held, 1996: A comparison of modeled and observed relationships between interannual variations of water vapor and temperature. J. Climate, 9, 665-675.
    Velden, C. S, C. M. Hayden, W. P. Menzel, J. L. Franklin, J. S. Lynch, 1992: The impact of satellite-derived winds on numerical hurricane track forecasting. Wea. Forecasting, 7, 107-119.
    Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173-195.
    Xiao, Q., X. Zou, M. Pondeca, M. A. Shapiro, C. S. Velden, 2002: Impact of GMS-5 and GOES-9 satellite-derived winds on the prediction of a NORPEX extratropical cyclone. Mon. Wea. Rev., 130, 507-528.
    Xu, G. Y., 2011: Variation of extreme cold events in Beijing during the winter from 1951 to 2009. Meteorological and Environmental Sciences, 34(2), 23-26. (in Chinese)
    Zhan, Y. Z., Z. H. Wang, Z. G. Zhang, 2012: Wind fields in dust storm clear sky region from the FY-2E split window channels. J. Remote Sens., 16(5), 738-750. (in Chinese)
    Zhang, Y., Y. Li, Z. G. Rong, 2010: Comparisons and analysis of the spectral response functions difference between FY-2E's and FY2C's split window channels. Spectroscopy and Spectral Analysis, 30(7), 1634-1637. (in Chinese)
    Zhang, Z. G., Z. H. Wang, Y. Z. Zhan, L. Yang, 2013: Brightness temperature's sensitivity analysis for clear sky AMVs derivation from infrared imagery. Journal of Tropical Meteorology, 29(3), 321-327. (in Chinese)
  • [1] Feng ZHANG, Yadong LEI, Jia-Ren YAN, Jian-Qi ZHAO, Jiangnan LI, Qiudan DAI, 2017: A New Parameterization of Canopy Radiative Transfer for Land Surface Radiation Models, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 613-622.  doi: 10.1007/s00376-016-6139-2
    [2] DUAN Minzheng, Qilong MIN, LU Daren, 2010: A Polarized Radiative Transfer Model Based on Successive Order of Scattering, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 891-900.  doi: 10.1007/s00376-009-9049-8
    [3] Zhenhui WANG, Xinxiu SUI, Qing ZHANG, Lu YANG, Hang ZHAO, Min TANG, Yizhe ZHAN, Zhiguo ZHANG, 2017: Derivation of Cloud-Free-Region Atmospheric Motion Vectors from FY-2E Thermal Infrared Imagery, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 272-282.  doi: 10.1007/s00376-016-6098-7
    [4] Yaodeng CHEN, Jie SHEN, Shuiyong FAN, Deming MENG, Cheng WANG, 2020: Characteristics of Fengyun-4A Satellite Atmospheric Motion Vectors and Their Impacts on Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1222-1238.  doi: 10.1007/s00376-020-0080-0
    [5] Yaping Zhou, Ken C. Rutledge, Thomas P. Charlock, Norman G. Loeb, Seiji Kato, 2001: Atmospheric Corrections Using MODTRAN for TOA and Surface BRDF Characteristics from High Resolution Spectroradiometric/Angular Measurements from a Helicopter Platform, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 984-1004.  doi: 10.1007/BF03403518
    [6] Hao LUO, Yong HAN, Chunsong LU, Jun YANG, Yonghua WU, 2019: Characteristics of Surface Solar Radiation under Different Air Pollution Conditions over Nanjing, China: Observation and Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1047-1059.  doi: 10.1007/s00376-019-9010-4
    [7] SHI Chong, WANG Pucai, Teruyuki NAKAJIMA, Yoshifumi OTA, TAN Saichun, SHI Guangyu, 2015: Effects of Ocean Particles on the Upwelling Radiance and Polarized Radiance in the Atmosphere-Ocean System, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1186-1196.  doi: 10.1007/s00376-015-4222-8
    [8] Byung-Ju SOHN, Geun-Hyeok RYU, 2007: Seasonally Varying Reference Atmospheres for East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 181-190.  doi: 10.1007/s00376-007-0181-z
    [9] Yang Jingmei, Qiu Jinhuan, 1992: An Easy Algorithm for Solving Radiative Transfer Equation in Clear Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 483-490.  doi: 10.1007/BF02677081
    [10] Mao Jietai, Luan Shengji, 1985: DERIVATION OF SCATTERING PHASE FUNCTION FROM CLEAR SKY BRIGHTNESS DISTRIBUTION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 129-131.  doi: 10.1007/BF03179745
    [11] DAI Qiudan, SUN Shufen, 2006: A Generalized Layered Radiative Transfer Model in the Vegetation Canopy, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 243-257.  doi: 10.1007/s00376-006-0243-7
    [12] DAI Qiudan, SUN Shufen, 2007: A Simplified Scheme of the Generalized Layered Radiative Transfer Model, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 213-226.  doi: 10.1007/s00376-007-0213-8
    [13] Liu Jinli, Lin Longfu, 1994: Microwave Simulations of Precipitation Distribution with Two Radiative Transfer Models, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 470-478.  doi: 10.1007/BF02658168
    [14] Zuohao CAO, Ronald E.STEWART, M.K.YAU, 2004: A New Perspective of the Physical Processes Associated with the Clear-Sky Greenhouse Effect over High Latitudes, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 171-180.  doi: 10.1007/BF02915703
    [15] HOU Jiangtao, JIA Gensuo, ZHAO Tianbao, WANG Hesong, TANG Bohui, , 2014: Satellite-Based Estimation of Daily Average Net Radiation under Clear-Sky Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 705-720.  doi: 10.1007/s00376-013-3047-6
    [16] PENG Lichun, LI Wanbiao, 2014: Parameterizations of Surface Radiation in the Semiarid Grasslands of Inner Mongolia under Clear-Sky Conditions Using MODIS Data, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1197-1208.  doi: 10.1007/s00376-014-3215-3
    [17] Lei SONG, Yinan WANG, 2016: A Solely Radiance-based Spectral Angular Distribution Model and Its Application in Deriving Clear-Sky Spectral Fluxes over Tropical Oceans, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 259-268.  doi: 10.1007/s00376-015-5040-8
    [18] F. Momo TEMGOUA, L. Akana NGUIMDO, D. NJOMO, 2024: Two-Stream Approximation to the Radiative Transfer Equation: A New Improvement and Comparative Accuracy with Existing Methods, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 278-292.  doi: 10.1007/s00376-023-2257-9
    [19] Mingyue SU, Chao LIU, Di DI, Tianhao LE, Yujia SUN, Jun LI, Feng LU, Peng ZHANG, Byung-Ju SOHN, 2023: A Multi-Domain Compression Radiative Transfer Model for the Fengyun-4 Geosynchronous Interferometric Infrared Sounder (GIIRS), ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1844-1858.  doi: 10.1007/s00376-023-2293-5
    [20] Li Jun, 1994: Temperature and Water Vapor Weighting Functions from Radiative Transfer Equation with Surface Emissivity and Solar Reflectivity, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 421-426.  doi: 10.1007/BF02658162

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 05 September 2013
Manuscript revised: 05 April 2014
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique

    Corresponding author: YANG Lu, yanglu_19@sina.com
  • 1. Beijing Meteorological Office (Da Xing), Beijing 102600;
  • 2. Collaborative Innovation Center on the Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044;
  • 3. School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044;
  • 4. Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089
Fund Project:  This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41175035 and 41005005), the National Basic Research Program of China (Grant No. 2009CB421502), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors are thankful to the National Satellite Meteorological Center of China for providing the FY-2E IR images. The authors also thank the National Centers for Environmental Prediction for providing the NCEP reanalysis datasets.

Abstract: The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 m) channel imagery, where the traditional cloud motion wind technique fails. A new tracer selection procedure, which we call the temporal difference technique, is demonstrated in this paper. This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature (TB) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions. The TB difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model. The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions: tropical, midlatitude summer, U.S. standard, and midlatitude winter. The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the TB wind. This technique is valid over cloud-free ocean areas. The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD), speed bias (BIAS), mean vector difference (MVD), standard deviation (SD), and root-mean-square error (RMSE), when compared with the wind field of NCEP reanalysis data and rawinsonde observations.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint