Advanced Search
Article Contents

Effect of Baroclinicity on Vortex Axisymmetrization. Part II: Baroclinic Basic Vortex

Fund Project:

doi: 10.1007/s00376-014-3238-9

  • The effect of baroclinicity on vortex axisymmetrization is examined within a two-layer dynamical model. Three basic state vortices are constructed with varying degrees of baroclinicity: (i) barotropic, (ii) weak baroclinic, and (iii) strong baroclinic. The linear and nonlinear evolution of wavenumber-2 baroclinic disturbances are examined in each of the three basic state vortices. The results show that the radial propagating speed of the vortex Rossby wave at the lower level is larger with the stronger baroclinicity, resulting in a faster linear axisymmetrization process in the stronger baroclinic vortex. It is found that the nonlinear axisymmetrization process takes the longest time in the strongest baroclinic vortex among the three different basic vortices due to the weaker kinetic energy transfer from asymmetric to symmetric circulations at the lower level. A major finding in this study is that the same initial asymmetric perturbation can have different effects on symmetric vortices depending on the initial vortex baroclinicity. In numerical weather prediction models, this implies that there exists a sensitivity of the subsequent structural and intensity change solely due to the specification of the initial vertical shear of the tropical cyclone vortex.
  • Carr, L. E., R. T. Williams, 1989: Barotropic vortex stability to perturbations from axisymmetry. J. Atmos. Sci., 46, 3177-3191.
    Enagonio, J., M. T. Montgomery, 2001: Tropical cyclogenesis via convectively forced vortex Rossby waves in a shallow water primitive equation model. J. Atmos. Sci., 58, 685-705.
    Marks, F. D. Jr., R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 1296-1317.
    Mȍller, J. D., M. T. Montgomery, 1999: Vortex Rossby-waves and their influence on hurricane intensification in a barotropic model. J. Atmos. Sci., 56, 1674-1687.
    Mȍller, J. D., M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57, 3366-3387.
    Montgomery, M. T., R. J. Kallenbanch, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435-465.
    Montgomery, M. T., J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby wave in a three-dimensional quasi-geostrophic model. J. Atmos. Sci., 55, 3176-3207.
    Peng, J., M. S. Peng, T. Li, 2008: Dependence of vortex axisymmetrization on the characteristics of the asymmetry. Quart. J. Roy. Meteor. Soc., 134, 1253-1268.
    Peng, M. S., J. Peng, T. Li, E. Hendricks, 2014: Effect of baroclinicity on vortex axisymmetrization. Part I: Barotropic basic vortex. Adv. Atmos. Sci., 31(6), doi: 10.1007/s00376-014-3237-x.
    Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 1653-1680.
    Rogers, R., S. Lorsolo, P. Reasor, J. Gamache, F. D. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 77-99.
    Shapiro, L. J., 2000: Potential vorticity asymmetries and tropical cyclone evolution in a moist three-layer model. J. Atmos. Sci., 57, 3645-3662.
    Smith, G. B. II, M. T. Montgomery, 1995: Vortex axisymmetrization: Dependence on azimuthal wavenumber or asymmetric radial structure changes. Quart. J. Roy. Meteor. Soc., 121, 1615-1650.
    Wang, Y., 2002: Vortex Rossby waves in a numerically simulated tropical cyclone. Part 1: Overall structure, potential vorticity and kinetic budgets. J. Atmos. Sci., 59, 1213-1238.
  • [1] Melinda S. PENG, Jiayi PENG, Tim LI, Eric HENDRICKS, 2014: Effect of Baroclinicity on Vortex Axisymmetrization. Part I: Barotropic Basic Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1256-1266.  doi: 10.1007/s00376-014-3237-x
    [2] JIANG Zhina, WANG Xin, WANG Donghai, 2015: Exploring the Phase-Strength Asymmetry of the North Atlantic Oscillation Using Conditional Nonlinear Optimal Perturbation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 671-679.  doi: 10.1007/s00376-014-4094-3
    [3] Marco Y.-T. LEUNG, Dongxiao WANG, Wen ZHOU, Yuntao JIAN, 2023: Extended Impact of Cold Air Invasions in East Asia in Response to a Warm South China Sea and Philippine Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 531-540.  doi: 10.1007/s00376-022-2096-0
    [4] Zhu Weijun, Sun Zhaobo, 1999: Influence of ENSO Event on the Maintenance of Pacific Storm Track in the Northern Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 630-640.  doi: 10.1007/s00376-999-0037-9
    [5] Lu YANG, Jianfang FEI, Xiaogang HUANG, Xiaoping CHENG, Xiangrong YANG, Juli DING, Wenli SHI, 2016: Asymmetric Distribution of Convection in Tropical Cyclones over the Western North Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1306-1321.  doi: 10.1007/s00376-016-5277-x
    [6] Xiaomeng SONG, Renhe ZHANG, Xinyao RONG, 2019: Influence of Intraseasonal Oscillation on the Asymmetric Decays of El Niño and La Niña, ADVANCES IN ATMOSPHERIC SCIENCES, , 779-792.  doi: 10.1007/s00376-019-9029-6
    [7] Bo SUN, 2018: Asymmetric Variations in the Tropical Ascending Branches of Hadley Circulations and the Associated Mechanisms and Effects, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 317-333.  doi: 10.1007/s00376-017-7089-z
    [8] Xianghui FANG, Fei ZHENG, 2018: Simulating Eastern- and Central-Pacific Type ENSO Using a Simple Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 671-681.  doi: 10.1007/s00376-017-7209-9
    [9] Yao YAO, Dehai LUO, 2018: An Asymmetric Spatiotemporal Connection between the Euro-Atlantic Blocking within the NAO Life Cycle and European Climates, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 796-812.  doi: 10.1007/s00376-017-7128-9
    [10] JIANG Zhina, MU Mu, WANG Donghai, 2011: Optimal Perturbations Triggering Weather Regime Transitions: Onset of Blocking and Strong Zonal Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 59-68.  doi: 10.1007/s00376-010-9097-0
    [11] SUN Yan, De-Zheng SUN, WU Lixin, and WANG Fan, 2013: Western Pacific Warm Pool and ENSO Asymmetry in CMIP3 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 940-953.  doi: 10.1007/s00376-012-2161-1
    [12] Yan SUN, Fan WANG, De-Zheng SUN, 2016: Weak ENSO Asymmetry Due to Weak Nonlinear Air-Sea Interaction in CMIP5 Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 352-364.  doi: 10.1007/s00376-015-5018-6
    [13] LIU Shan, WANG Huijun, 2013: Transition of Zonal Asymmetry of the Arctic Oscillation and the Antarctic Oscillation at the End of 1970s, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 41-47.  doi: 10.1007/s00376-012-2027-6
    [14] XIN Xiaoge, CHENG Yanjie, WANG Fang, WU Tongwen, and ZHANG Jie, 2013: Asymmetry of Surface Climate Change under RCP2.6 Projections from the CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 796-805.  doi: 10.1007/s00376-012-2151-3
    [15] Renping LIN, Fei ZHENG, Xiao DONG, 2018: ENSO Frequency Asymmetry and the Pacific Decadal Oscillation in Observations and 19 CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 495-506.  doi: 10.1007/s00376-017-7133-z
    [16] Hai ZHI, Zihui YANG, Rong-Hua ZHANG, Pengfei LIN, Jifeng QI, Yu HUANG, Meng DONG, 2023: Asymmetry of Salinity Variability in the Tropical Pacific during Interdecadal Pacific Oscillation Phases, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1269-1284.  doi: 10.1007/s00376-022-2284-y
    [17] Soon-Il AN, 2018: Impact of Pacific Decadal Oscillation on Frequency Asymmetry of El Niño and La Niña Events, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 493-494.  doi: 10.1007/s00376-018-8024-7
    [18] Chanh KIEU, 2016: The Dynamics of Barotropic Vortex Merging, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 987-995.  doi: 10.1007/s00376-016-6006-1
    [19] CHEN Lianshou, LUO Zhexian, 2004: Interaction of Typhoon and Mesoscale Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 515-528.  doi: 10.1007/BF02915719
    [20] Na LI, Lingkun RAN, Shouting GAO, 2016: The Impact of Deformation on Vortex Development in a Baroclinic Moist Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 233-246.  doi: 10.1007/s00376-015-5082-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 15 December 2013
Manuscript revised: 01 March 2014
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Effect of Baroclinicity on Vortex Axisymmetrization. Part II: Baroclinic Basic Vortex

    Corresponding author: Jiayi PENG, jiayi.peng@noaa.gov
  • 1. IMSG at Environmental Modeling Center, NCEP/NOAA, College Park, Maryland, USA;
  • 2. Naval Research Laboratory, Monterey, California, USA;
  • 3. Department of Meteorology and IPRC, University of Hawaii at Manoa, Honolulu, Hawaii, USA
Fund Project:  This work was supportedbyONRGrants N000140310739 and PE 0602435N. The International Pacific Research Center is partially sponsored by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC).

Abstract: The effect of baroclinicity on vortex axisymmetrization is examined within a two-layer dynamical model. Three basic state vortices are constructed with varying degrees of baroclinicity: (i) barotropic, (ii) weak baroclinic, and (iii) strong baroclinic. The linear and nonlinear evolution of wavenumber-2 baroclinic disturbances are examined in each of the three basic state vortices. The results show that the radial propagating speed of the vortex Rossby wave at the lower level is larger with the stronger baroclinicity, resulting in a faster linear axisymmetrization process in the stronger baroclinic vortex. It is found that the nonlinear axisymmetrization process takes the longest time in the strongest baroclinic vortex among the three different basic vortices due to the weaker kinetic energy transfer from asymmetric to symmetric circulations at the lower level. A major finding in this study is that the same initial asymmetric perturbation can have different effects on symmetric vortices depending on the initial vortex baroclinicity. In numerical weather prediction models, this implies that there exists a sensitivity of the subsequent structural and intensity change solely due to the specification of the initial vertical shear of the tropical cyclone vortex.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint