Advanced Search
Article Contents

Variation of the North Equatorial Current, Mindanao Current, and Kuroshio Current in a High-Resolution Data Assimilation during 20082012

Fund Project:

doi: 10.1007/s00376-014-3241-1

  • Outputs from a high-resolution data assimilation system, the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12 analysis, were analyzed for the period September 2008 to February 2012. The objectives were to evaluate the performance of the system in simulating ocean circulation in the tropical northwestern Pacific and to examine the seasonal to interannual variations of the western boundary currents. The HYCOM assimilation compares well with altimetry observations and mooring current measurements. The mean structures and standard deviations of velocities of the North Equatorial Current (NEC), Mindanao Current (MC) and Kuroshio Current (KC) also compare well with previous observations. Seasonal to interannual variations of the NEC transport volume are closely correlated with the MC transport volume, instead of that of the KC. The NEC and MC transport volumes mainly show well-defined annual cycles, with their maxima in spring and minima in fall, and are closely related to the circulation changes in the Mindanao Dome (MD) region. In seasons of transport maxima, the MD region experiences negative SSH anomalies and a cyclonic gyre anomaly, and in seasons of transport minima the situation is reversed. The sea surface NEC bifurcation latitude (NBL) in the HYCOM assimilation also agrees well with altimetry observations. In 2009, the NBL shows an annual cycle similar to previous studies, reaching its southernmost position in summer and its northernmost position in winter. In 2010 and 2011, the NBL variations are dominantly influenced by La Niňa events. The dynamics responsible for the seasonal to interannual variations of the NEC-MC-KC current system are also discussed.
  • Chelton, D. B., R. A. de Szoeke, M. G. Schlax, K. E. Naggar, N. Siwertz, 1998:Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433-460.
    Chelton, D. B., M. G. Schlax, R. M. Samelson, R. A. de Szoeke, 2007:Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi: 10.1029/2007GL 030812.
    Chelton, D. B., M. G. Schlax, R. M. Samelson, 2011:Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167-216.
    Chen, Z. H., L. X. Wu, 2012:Long-term change of the Pacific North Equatorial Current bifurcation in SODA. J. Geophys. Res., 117, C06016, doi: 10.1029/2011JC007814.
    Cummings, J. A., 2005:Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131(613), 3583-3604.
    Dee, D. P., and Coauthors, 2011:The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi: 10.1002/qj.828.
    Doi, T., T. Tozuka, T. Yamagata, 2010:Equivalent forcing depth in tropical oceans. Dyn. Atmos. Oceans., 50, 415-423.
    Ducet, N., P. Y. Le Traon, G. Reverdin, 2000:Global high-resolution mapping of ocean circulation from TOPEX/POSEIDON and ERS-1 and -2. J. Geophys. Res., 105, 19477-19498.
    Guinehut, S., C. Coatanoan, A.-L. Dhomps, P.-Y. Le Traon, G. Larnicol, 2009:On the use of satellite altimeter data in Argo quality control. J. Atmos. Oceanic Technol., 26, 395-402, doi: 10.1175/2008JTECHO648.1.
    Hosoda, S., T. Ohira, T. Nakamura, 2008:A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. Vol. 8, JAMSTEC Report of Research and Development, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan, 47-59.
    Hu, D. X., M. C. Cui, 1989:The western boundary current in the far western Pacific Ocean. Proc. Western International Meeting and Workshop on TOGA COARE, Joel Picaut, Roger Lukas and Thierry Delcroix, Eds., Noumea, New Caledonia, 123-134.
    Hu, D. X., M. C. Cui, 1991: The western boundary current of the Pacific and its role in the climate. Chinese Journal of Oceanology and Limnology, 9, 1-14.
    Hu, D. X., and Coauthors, 2013: Direct measurements of the Luzon undercurrent. J. Phys. Oceanogr., 43, 1417-1425
    Ingleby, B., M. Huddleston, 2007:Quality control of ocean temperature and salinity profiles-historical and real-time data. Journal of Marine Systems., 65, 158-175, doi: 10.1016/j.jmarsys.2005.11.019.
    Kalnay, E., and Coauthors, 1996:The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437-472.
    Kashino, Y., A. Ishida, Y. Kuroda, 2005:Variability of the Mindanao Current: Mooring observation results. Geophys. Res. Lett., 32, L18611, doi: 10.1029/2005GL023880.
    Kashino, Y., N. Espaňa, F. Syamsudin, K. J. Richards, T. Jensen, P. Dutrieux, A. Ishida, 2009:Observations of the North Equatorial Current, Mindanao Current, and the Kuroshio Current system during the 2006/07 El Niňo and 2007/08 La Niňa. J. Oceanogr., 65, 325-333.
    Kim, Y. Y., T. D. Qu, T. Jensen, T. Miyama, H. Mitsudera, H.-W. Kang, A. Ishida, 2004:Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM. J. Geophys. Res., 109, C03040, doi: 10.1029/2003JC002013.
    Large, W. G., S. Pond, 1981:Open ccean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11(3), 324-336, doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.
    Li, Y. L., F. Wang, F. G. Zhai, 2012:Interannual variations of subsurface spiciness in the Philippine Sea: Observations and Mechanism. J. Phys. Oceanogr., 42, 1022-1038.
    Masumoto, Y., T. Yamagata, 1991:Response of the western tropical Pacific to the Asian winter monsoon: The generation of the Mindanao Dome. J. Phys. Oceanogr., 21, 1386-1398.
    Nitani, H., 1972:Beginning of the Kuroshio. Kuroshio: Its Physical Aspects, H. Stommel and K. Yoshida, Eds., University of Washington Press, 129-163.
    Qiu, B., 1999:Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 2471-2486.
    Qiu, B., R. Lukas, 1996:Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12315-12330.
    Qiu, B., S. M. Chen, 2010:Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J. Phys. Oceanogr., 40, 2525-2538.
    Qiu, B., W. Miao, P. MȔller, 1997:Propagation and decay of forced and free baroclinic Rossby waves in off-equatorial oceans. J. Phys. Oceanogr., 27, 2405-2417.
    Qu, T. D., R. Lukas, 2003:The bifurcation of the North Equatorial Current in the Pacific. J. Phys. Oceanogr., 33, 5-18.
    Qu, T. D., T. Kagimoto, T. Yamagata, 1997:A subsurface countercurrent along the east coast of Luzon. Deep-Sea Res., 44(3), 413-423, doi: 10.1016/S0967-0637(96)00121-5.
    Qu, T. D., H. Mitsudera, T. Yamagata, 1998:On the western boundary currents in the Philippine Sea. J. Geophys. Res., 103, 7537-7548.
    Qu, T. D., T.-L. Chiang, C.-R. Wu, P. Dutrieux, D. X. Hu, 2012:Mindanao Current/Undercurrent in an eddy-resolving GCM. J. Geophys. Res., 117, C06026, doi: 10.1029/2011JC007838.
    Song, D., D. X. Hu, F. G. Zhai, 2012:Sea surface height variations in the Mindanao Dome region in response to the northern tropical Pacific winds. Chinese Journal of Oceanology and Limnology, 30(4), 675-683.
    Tozuka, T., T. Kagimoto, Y. Masumoto, T. Yamagata, 2002:Simulated multiscale variations in the Western Tropical Pacific: The Mindanao Dome revisited. J. Phys. Oceanogr., 32, 1338-1359.
    Wang, Q. Y., D. X. Hu, 2006:Bifurcation of the North Equatorial Current derived from altimetry in the Pacific Ocean. J. Hydrodyn., 18B, 620-626.
    Wijffels, S., E. Firing, J. Toole, 1995:The mean structure and variability of the Mindanao Current at 8°N. J. Geophys. Res., 100, 18 421-18 435.
    Yan, Q. X., D. X. Hu, F. G. Zhai, 2014:Seasonal variability of the North Equatorial Current transport in the western Pacific Ocean. Chinese Journal of Oceanology and Limnology, 32, 223-237.
    Yaremchuk, M., T. D. Qu, 2004:Seasonal variability of the large-scale currents near the coast of the Philippines. J. Phys. Oceanogr., 34, 844-855.
    Zhai, F. G., D. X. Hu, 2012:Interannual variability of transport and bifurcation of the North Equatorial Current in the Tropical North Pacific Ocean. Chinese Journal of Oceanology and Limnology, 30(1), 177-185.
    Zhai, F. G., D. X. Hu, 2013:Revisit the interannual variability of the North Equatorial Current transport with ECMWF ORA-S3. J. Geophys. Res., 118, 1349-1366, doi: 10.1002/jgrc.20093.
    Zhang, Z. W., W. Zhao, J. W. Tian, X. F. Liang, 2013:A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J. Geophys. Res., 118, 6479-6494, doi: 10.1002/2013JC008994.
  • [1] Xu Yinlong, Zhou Mingyu, 1999: Numerical Simulations on the Explosive Cyclogenesis over the Kuroshio Current, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 64-76.  doi: 10.1007/s00376-999-0004-5
    [2] Li Chongyin, 1984: ON THE CISK WITH SHEARING BASIC CURRENT, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 256-276.  doi: 10.1007/BF02678138
    [3] DUAN Yihong, WU Rongsheng, YU Hui, LIANG Xudong, Johnny C L CHAN, 2004: The Role of -effect and a Uniform Current on Tropical Cyclone Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 75-86.  doi: 10.1007/BF02915681
    [4] Linden ASHCROFT, Rob ALLAN, Howard BRIDGMAN, Joëlle GERGIS, Christa PUDMENZKY, Ken THORNTON, 2016: Current Climate Data Rescue Activities in Australia, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1323-1324.  doi: 10.1007/s00376-016-6189-5
    [5] Wansuo DUAN, Xixi WEN, 2019: Errors in Current Velocity in the Low-latitude North Pacific: Results from the Regional Ocean Modeling System, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 397-416.  doi: 10.1007/s00376-018-8140-4
    [6] Bao Chenglan, Ruan Junshi, Zhu Yaojian, 1986: A STUDY ON THE RELATIONSHIP BETWEEN THE ROTATION OF BINARY TYPHOONS AND STEERING CURRENT, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 115-124.  doi: 10.1007/BF02680050
    [7] Liwei ZOU, Tian-Jun ZHOU, 2024: Convection-permitting simulations of current and future climates over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3277-9
    [8] Jingpeng ZHANG, Tianbao ZHAO, Zhi LI, Chunxiang LI, Zhen LI, Kairan YING, Chunxiang SHI, Lipeng JIANG, Wenyu ZHANG, 2021: Evaluation of Surface Relative Humidity in China from the CRA-40 and Current Reanalyses, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1958-1976.  doi: 10.1007/s00376-021-0333-6
    [9] Robin T. CLARK, Peili WU, Lixia ZHANG, Chaofan LI, 2021: The Anomalous Mei-yu Rainfall of Summer 2020 from a Circulation Clustering Perspective: Current and Possible Future Prevalence, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2010-2022.  doi: 10.1007/s00376-021-1086-y
    [10] Yun QIAN, TC CHAKRABORTY, Jianfeng LI, Dan LI, Cenlin HE, Chandan SARANGI, Fei CHEN, Xuchao YANG, L. Ruby LEUNG, 2022: Urbanization Impact on Regional Climate and Extreme Weather: Current Understanding, Uncertainties, and Future Research Directions, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 819-860.  doi: 10.1007/s00376-021-1371-9
    [11] Yang WU, Zhaomin WANG, Chengyan LIU, Liangjun YAN, 2024: Impacts of Ice-Ocean Stress on the Subpolar Southern Ocean: Role of the Ocean Surface Current, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 293-309.  doi: 10.1007/s00376-023-3031-8
    [12] Lixia ZHANG, Xiaojing YU, Tianjun ZHOU, Wenxia ZHANG, Shuai HU, Robin CLARK, 2023: Understanding and Attribution of Extreme Heat and Drought Events in 2022: Current Situation and Future Challenges, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1941-1951.  doi: 10.1007/s00376-023-3171-x
    [13] Yun QIAN, TC CHAKRABORTY, Jianfeng LI, Dan LI, Cenlin HE, Chandan SARANGI, Fei CHEN, Xuchao YANG, L. Ruby LEUNG, 2023: Correction to: Urbanization Impact on Regional Climate and Extreme Weather: Current Understanding, Uncertainties, and Future Research Directions, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 333-333.  doi: 10.1007/s00376-022-2007-4
    [14] Guifu ZHANG, Vivek N. MAHALE, Bryan J. PUTNAM, Youcun QI, Qing CAO, Andrew D. BYRD, Petar BUKOVCIC, Dusan S. ZRNIC, Jidong GAO, Ming XUE, Youngsun JUNG, Heather D. REEVES, Pamela L. HEINSELMAN, Alexander RYZHKOV, Robert D. PALMER, Pengfei ZHANG, Mark WEBER, Greg M. MCFARQUHAR, Berrien MOORE III, Yan ZHANG, Jian ZHANG, J. VIVEKANANDAN, Yasser AL-RASHID, Richard L. ICE, Daniel S. BERKOWITZ, Chong-chi TONG, Caleb FULTON, Richard J. DOVIAK, 2019: Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 571-588.  doi: 10.1007/s00376-019-8172-4
    [15] Xiaoyong YU, Chengyan LIU, Xiaocun WANG, Jian CAO, Jihai DONG, Yu LIU, 2022: Evaluation of Arctic Sea Ice Drift and its Relationship with Near-surface Wind and Ocean Current in Nine CMIP6 Models from China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 903-926.  doi: 10.1007/s00376-021-1153-4
    [16] WANG Weiwen, WANG Dongxiao, ZHOU Wen, LIU Qinyan, YU Yongqiang, LI Chao, 2011: Impact of the South China Sea Throughflow on the Pacific Low-Latitude Western Boundary Current: A Numerical Study for Seasonal and Interannual Time Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1367-1376.  doi: 10.1007/s00376-011-0142-4
    [17] LIU Qinyu, WEN Na, YU Yongqiang, 2006: The Role of the Kuroshio in the Winter North Pacific Ocean-Atmosphere Interaction: Comparison of a Coupled Model and Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 181-189.  doi: 10.1007/s00376-006-0181-4
    [18] Peilong YU, Minghao YANG, Chao ZHANG, Yi LI, Lifeng ZHANG, Shiyao CHEN, 2023: Response of the North Pacific Storm Track Activity in the Cold Season to Multi-scale Oceanic Variations of Kuroshio Extension System: A Statistical Assessment, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 514-530.  doi: 10.1007/s00376-022-2044-z
    [19] Masafumi Kamachi, Tsurane Kuragano, Noriya Yoshioka, Jiang Zhu, Francesco Uboldi, 2001: Assimilation of Satellite Altimetry into a Western North Pacific Operational Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 767-786.
    [20] Xiao-Tong ZHENG, Lihui GAO, Gen LI, Yan DU, 2016: The Southwest Indian Ocean Thermocline Dome in CMIP5 Models: Historical Simulation and Future Projection, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 489-503.  doi: 10.1007/s00376-015-5076-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 December 2013
Manuscript revised: 24 February 2014
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Variation of the North Equatorial Current, Mindanao Current, and Kuroshio Current in a High-Resolution Data Assimilation during 20082012

    Corresponding author: ZHAI Fangguo, gfzhai@hotmail.com
  • 1. Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005;
  • 2. Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071
Fund Project:  The NCEP Reanalysis data were obtained from the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, via their website: http://www.esrl.noaa.gov/psd/. We thank Dr. Wei CHENG for providing the HYCOM assimilation product. We also greatly appreciate the insightful and valuable comments from the two anonymous reviewers. The present study was sponsored by the China Postdoctoral Science Foundation (Grant No. 2013M530331) and a project of the State Strategic Program of Global Change (Grant No. 2013CB956202).

Abstract: Outputs from a high-resolution data assimilation system, the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12 analysis, were analyzed for the period September 2008 to February 2012. The objectives were to evaluate the performance of the system in simulating ocean circulation in the tropical northwestern Pacific and to examine the seasonal to interannual variations of the western boundary currents. The HYCOM assimilation compares well with altimetry observations and mooring current measurements. The mean structures and standard deviations of velocities of the North Equatorial Current (NEC), Mindanao Current (MC) and Kuroshio Current (KC) also compare well with previous observations. Seasonal to interannual variations of the NEC transport volume are closely correlated with the MC transport volume, instead of that of the KC. The NEC and MC transport volumes mainly show well-defined annual cycles, with their maxima in spring and minima in fall, and are closely related to the circulation changes in the Mindanao Dome (MD) region. In seasons of transport maxima, the MD region experiences negative SSH anomalies and a cyclonic gyre anomaly, and in seasons of transport minima the situation is reversed. The sea surface NEC bifurcation latitude (NBL) in the HYCOM assimilation also agrees well with altimetry observations. In 2009, the NBL shows an annual cycle similar to previous studies, reaching its southernmost position in summer and its northernmost position in winter. In 2010 and 2011, the NBL variations are dominantly influenced by La Niňa events. The dynamics responsible for the seasonal to interannual variations of the NEC-MC-KC current system are also discussed.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint