Advanced Search
Article Contents

Impacts of Uncertainty in AVOC Emissions on the Summer ROx Budget and Ozone Production Rate in the Three Most Rapidly-Developing Economic Growth Regions of China

Fund Project:

doi: 10.1007/s00376-014-3251-z

  • High levels of uncertainty in non-methane volatile organic compound (NMVOC) emissions in China could lead to significant variation in the budget of the sum of hydroxyl (OH) and peroxy (HO2, RO2) radicals (ROx= OH + HO2 + RO2) and the ozone production rate [P(O3)], but few studies have investigated this possibility, particularly with three-dimensional air quality models. We added diagnostic variables into the WRF-Chem model to assess the impact of the uncertainty in anthropogenic NMVOC (AVOC) emissions on the ROx budget and P(O3) in the Beijing-Tianjin-Hebei region, Yangtze River Delta, and Pearl River Delta of China. The WRF-Chem simulations were compared with satellite and ground observations, and previous observation-based model studies. Results indicated that 68% increases (decreases) in AVOC emissions produced 4%-280% increases (2%-80% decreases) in the concentrations of OH, HO2, and RO2 in the three regions, and resulted in 35%-48% enhancements (26%-39% reductions) in the primary ROx production and ~65% decreases (68%-73% increases) of the P(O3) in Beijing, Shanghai, and Guangzhou. For the three cities, the two largest contributors to the ROx production rate were the reaction of O1D + H2O and photolysis of HCHO, ALD2, and others; the reaction of OH + NO2 (71%-85%) was the major ROx sink; and the major contributor to P(O3) was the reaction of HO2 + NO (~65%). Our results showed that AVOC emissions in 2006 from \citeZhang2009 have been underestimated by ~ 68% in suburban areas and by 68% in urban areas, implying that daily and hourly concentrations of secondary organic aerosols and inorganic aerosols could be substantially underestimated, and cloud condensation nuclei could be underestimated, whereas local and regional radiation was overestimated.
  • An, J. L., 2006: Ozone production efficiency in Beijing area with high NOx emissions. Acta Scientiae Circumstantiae, 26, 652-657.
    An, J. L., Y. Li, Y. Chen, J. Li, Y. Qu, Y. J. Tang, 2013: Enhancements of major aerosol components due to additional HONO sources in the North China Plain and implications for visibility and haze. Adv. Atmos. Sci., 30, 57-66.
    Avery, R. J., 2006: Reactivity-based VOC control for solvent products: More efficient ozone reduction strategies. Environmental Science and Technology, 40, 4845-4850.
    Bo, Y., H. Cai, S. D. Xie, 2008: Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China. Atmos. Chem. Phys., 8, 7297-7316.
    Carter, W. P., 1994: Development of ozone reactivity scales for volatile organic compounds. Journal of the Air and Waste Management Association, 44, 881-899.
    Chameides, W., and Coauthors, 1992: Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res., 97, 6037-6055.
    Chen, S., W. H. Brune, 2012: Global sensitivity analysis of ozone production and O3-NOx-VOC limitation based on field data. Atmos. Environ., 55, 288-296.
    Chou, C. C. K., C.-Y. Tsai, C.-J. Shiu, S. C. Liu, T. Zhu, 2009: Measurement of NOy during Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006): Implications for the ozone production efficiency of NOx. J. Geophys. Res., 114, D00G01, doi: 10.1029/2008jd010446.
    De Smedt, I., J. F. MȔller, T. Stavrakou, R. van der A, H. Eskes, M. Van Roozendael, 2008: Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmos. Chem. Phys., 8, 4947-4963.
    Dusanter, S., and Coauthors, 2009: Measurements of OH and HO2 concentrations during the MCMA-2006 field campaign-Part 2: Model comparison and radical budget. Atmos. Chem. Phys., 9, 6655-6675.
    Emmerson, K. M., N. Carslaw, M. J. Pilling, 2005: Urban atmospheric chemistry during the PUMA campaign 2: Radical budgets for OH, HO2 and RO2. Journal of Atmospheric Chemistry, 52, 165-183.
    Emmons, L. K., and Coauthors, 2010: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development Discussions, 3, 43-67.
    Fast, J. D., and Coauthors, 2006: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res., 111, D21305, doi: 10.1029/2005jd006721.
    Fu, J. S., D. G. Streets, C. J. Jang, J. M. Hao, K. He, L. T. Wang, Q. Zhang, 2009: Modeling regional/urban ozone and particulate matter in Beijing, China. Journal of the Air and Waste Management Association, 59, 37-44.
    Fu, T.-M., and Coauthors, 2007: Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. J. Geophys. Res., 112, D06312, doi: 10.1029/2006JD007853.
    Gao, H., and Coauthors, 2011: A study of air pollution of city clusters. Atmos. Environ., 45, 3069-3077.
    Geng, F., X. Tie, A. Guenther, G. Li, J. Cao, P. Harley, 2011: Effect of isoprene emissions from major forests on ozone formation in the city of Shanghai, China. Atmos. Chem. Phys., 11, 10449-10459.
    Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, B. Eder, 2005: Fully coupled "online" chemistry within the WRF model. Atmos. Environ., 39, 6957-6975.
    Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 3181-3210.
    Hao, J., D. He, Y. Wu, L. Fu, K. He, 2000: A study of the emission and concentration distribution of vehicular pollutants in the urban area of Beijing. Atmos. Environ., 34, 453-465.
    Huang, C., and Coauthors, 2011: Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China. Atmos. Chem. Phys., 11, 4105-4120.
    Kanaya, Y., and Coauthors, 2009: Rates and regimes of photochemical ozone production over Central East China in June 2006: A box model analysis using comprehensive measurements of ozone precursors. Atmos. Chem. Phys., 9, 7711-7723.
    Kleinman, L. I., 2005: The dependence of tropospheric ozone production rate on ozone precursors. Atmos. Environ., 39, 575-586.
    Kleinman, L. I., P. H. Daum, Y. N. Lee, L. J. Nunnermacker, S. R. Springston, J. Weinstein-Lloyd, J. Rudolph, 2002: Ozone production efficiency in an urban area. J. Geophys. Res., 107, ACH 23-1-ACH 23-12, doi: 10.1029/2002JD002529.
    Klimont, Z., D. G. Streets, S. Gupta, J. Cofala, L. Fu, Y. Ichikawa, 2002: Anthropogenic emissions of non-methane volatile organic compounds in China. Atmos. Environ., 36, 1309-1322.
    Li, L., and Coauthors, 2012: Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system. Atmos. Chem. Phys., 12, 10 971-10 987.
    Li, Y., J. An, M. Min, W. Zhang, F. Wang, P. Xie, 2011: Impacts of HONO sources on the air quality in Beijing, Tianjin and Hebei Province of China. Atmos. Environ., 45, 4735-4744.
    Li, Y., J. An, I. Gultepe, 2014: Effects of additional HONO sources on visibility over the North China Plain. Adv. Atmos. Sci., 31(5), 1221-1232, doi: 10.1007/s00376-014-4019-1.
    Liu, X.-H., and Coauthors, 2010: Understanding of regional air pollution over China using CMAQ, Part I: Performance evaluation and seasonal variation. Atmos. Environ., 44, 2415-2426.
    Liu, Z., and Coauthors, 2012: Summertime photochemistry during CAREBeijing-2007: ROx budgets and O3 formation. Atmos. Chem. Phys., 12, 7737-7752.
    Lu, K., and Coauthors, 2010: Oxidant (O3 + NO2) production processes and formation regimes in Beijing. J. Geophys. Res., 115, D07303.
    Lu, K. D., and Coauthors, 2012: Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: A missing OH source in a VOC rich atmosphere. Atmos. Chem. Phys., 12, 1541-1569.
    Ma, J. Z., and Coauthors, 2012: The IPAC-NC field campaign: A pollution and oxidization pool in the lower atmosphere over Huabei, China. Atmos. Chem. Phys., 12, 3883-3908.
    Mao, J., and Coauthors, 2009: Airborne measurement of OH reactivity during INTEX-B. Atmos. Chem. Phys., 9, 163-173.
    Ohara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and , T. Hayasaka, 2007: An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmos. Chem. Phys., 7, 4419-4444.
    Palmer, P. I., D. J. Jacob, A. M. Fiore, R. V. Martin, K. Chance, T. P. Kurosu, 2003: Mapping isoprene emissions over North America using formaldehyde column observations from space. J. Geophys. Res., 108, 4180, doi: 10.1029/2002JD002153.
    Palmer, P. I., and Coauthors, 2006: Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. J. Geophys. Res., 111, D12315, doi: 10.1029/2005JD006689.
    Shao, M., X. Tang, Y. Zhang, W. Li, 2006: City clusters in China: Air and surface water pollution. Frontiers in Ecology and the Environment, 4, 353-361.
    Shao, M., S. Lu, Y. Liu, X. Xie, C. Chang, S. Huang, Z. Chen, 2009: Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation. J. Geophys. Res., 114, D00G06, doi:10.1029/2008JD010863.
    Shirley, T., and Coauthors, 2006: Atmospheric oxidation in the Mexico City metropolitan area (MCMA) during April 2003. Atmos. Chem. Phys., 6, 2753-2765.
    Sillman, S., 1999: The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ., 33, 1821-1846.
    Sillman, S., D. Y. He, 2002: Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators. J. Geophys. Res., 107, 4659, doi: 10.1029/2001JD001123.
    Simon, H., K. R. Baker, S. Phillips, 2012: Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos. Environ., 61, 124-139.
    Song, S.-K., Y.-K. Kim, Z.-H. Shon, J.-Y. Ryu, 2012: Photochemical analyses of ozone and related compounds under various environmental conditions. Atmos. Environ., 47, 446-458.
    Streets, D., and Coauthors, 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108, 8809, doi: 10.1029/2002JD003093.
    Tang, Y., J. An, Y. Li, F. Wang, 2014: Uncertainty in the uptake coefficient for HONO formation on soot and its impacts on concentrations of major chemical components in the Beijing-Tianjin-Hebei region. Atmos. Environ., 84, 163-171.
    Thornton, J., and Coauthors, 2002: Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume. J. Geophys. Res., 107, 4146, doi: 10.1029/2001jd000932.
    Tie, X., F. Geng, L. Peng, W. Gao, C. Zhao, 2009: Measurement and modeling of O3 variability in Shanghai, China: Application of the WRF-Chem model. Atmos. Environ., 43, 4289-4302.
    Tonooka, Y., and Coauthors, 2001: NMVOCs and CO emission inventory in East Asia. Water Air and Soil Pollution, 130, 199-204.
    Wang, X., and Coauthors, 2010: Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality modeling system. Atmos. Chem. Phys., 10, 4423-4437.
    Wei, W., S. Wang, S. Chatani, Z. Klimont, J. Cofala, J. Hao, 2008: Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmos. Environ., 42, 4976-4988.
    Xing, J., S. X. Wang, C. Jang, Y. Zhu, J. M. Hao, 2011: Nonlinear response of ozone to precursor emission changes in China: A modeling study using response surface methodology. Atmos. Chem. Phys., 11, 5027-5044.
    Xu, X. B., B. Z. Ge, W. L. Lin, 2009: Progresses in the Research of Ozone Production Efficiency (OPE). Advances in Earth Science, 24, 845-853.
    Zare, A., J. Brand t, J. H. Christensen, P. Irannejad, 2012: Evaluation of two isoprene emission models for use in a long-range air pollution model. Atmos. Chem. Phys. Discuss., 12, 9247-9281.
    Zaveri, R. A., L. K. Peters, 1999: A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res., 104, 30387-30415.
    Zaveri, R. A., R. C. Easter, J. D. Fast, L. K. Peters, 2008: Model for simulating aerosol interactions and chemistry (MOSAIC). J. Geophys. Res., 113, D13204, doi:10.1029/2007JD008782.
    Zhang, H., and Coauthors, 2012: Source apportionment of PM2.5 nitrate and sulfate in China using a source-oriented chemical transport model. Atmos. Environ., 62, 228-242.
    Zhang, Q., and Coauthors, 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131-5153.
    Zhang, Y., and Coauthors, 2008: Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview. Atmos. Environ., 42, 6157-6173.
    Zhao, Y., S. Wang, C. P. Nielsen, X. Li, J. Hao, 2010: Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants. Atmos. Environ., 44, 1515-1523.
    Zheng, J., L. Zhang, W. Che, Z. Zheng, S. Yin, 2009: A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmos. Environ., 43, 5112-5122.
  • [1] HAN Meng, LU Xueqiang, ZHAO Chunsheng, RAN Liang, HAN Suqin, 2015: Characterization and Source Apportionment of Volatile Organic Compounds in Urban and Suburban Tianjin, China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 439-444.  doi: 10.1007/s00376-014-4077-4
    [2] LI Mingwei, WANG Yuxuan*, and JU Weimin, 2014: Effects of a Remotely Sensed Land Cover Dataset with High Spatial Resolution on the Simulation of Secondary Air Pollutants over China Using the Nested-grid GEOS-Chem Chemical Transport Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 179-187.  doi: 10.1007/s00376-013-2290-1
    [3] Shuang WU, Guiqian TANG, Yinghong WANG, Rong MAI, Dan YAO, Yanyu KANG, Qinglu WANG, Yuesi WANG, 2021: Vertical Evolution of Boundary Layer Volatile Organic Compounds in Summer over the North China Plain and the Differences with Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1165-1176.  doi: 10.1007/s00376-020-0254-9
    [4] Hyo-Eun JI, Soon-Hwan LEE, Hwa-Woon LEE, 2013: Characteristics of Sea Breeze Front Development with Various Synoptic Conditions and Its Impact on Lower Troposphere Ozone Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1461-1478.  doi: 10.1007/s00376-013-2256-3
    [5] Yuhan LIU, Hongli WANG, Shengao JING, Ming ZHOU, Shenrong LOU, Kun QU, Wanyi QIU, Qian WANG, Shule LI, Yaqin GAO, Yusi LIU, Xiaobing LI, Zhong-Ren PENG, Junhui CHEN, Keding LU, 2021: Vertical Profiles of Volatile Organic Compounds in Suburban Shanghai, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1177-1187.  doi: 10.1007/s00376-021-0126-y
    [6] Meng CUI, Xingqin AN, Li XING, Guohui LI, Guiqian TANG, Jianjun HE, Xin LONG, Shuman ZHAO, 2021: Simulated Sensitivity of Ozone Generation to Precursors in Beijing during a High O3 Episode, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1223-1237.  doi: 10.1007/s00376-021-0270-4
    [7] Jingmei Yang, Jinhuan Qiu, 2009: An Empirical Model for Estimating Stratospheric Ozone Vertical Distributions over China, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 352-358.  doi: 10.1007/s00376-009-0352-1
    [8] LI Dan, BIAN Jianchun, 2015: Observation of a Summer Tropopause Fold by Ozonesonde at Changchun, China: Comparison with Reanalysis and Model Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1354-1364.  doi: 10.1007/s00376-015-5022-x
    [9] Hailiang ZHANG, Yongfu XU, Long JIA, Min XU, 2021: Smog Chamber Study on the Ozone Formation Potential of Acetaldehyde, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1238-1251.  doi: 10.1007/s00376-021-0407-5
    [10] LIU Yu, LI Weiliang, ZHOU Xiuji, I.S.A.ISAKSEN, J.K.SUNDET, HE Jinhai, 2003: The Possible Influences of the Increasing Anthropogenic Emissions in India on Tropospheric Ozone and OH, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 968-977.  doi: 10.1007/BF02915520
    [11] Liang ZHANG, Bin ZHU, Jinhui GAO, Hanqing KANG, 2017: Impact of Taihu Lake on City Ozone in the Yangtze River Delta, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 226-234.  doi: 10.1007/s00376-016-6099-6
    [12] XU Jun, ZHANG Yuanhang, WANG Wei, 2006: Numerical Study on the Impacts of Heterogeneous Reactions on Ozone Formation in the Beijing Urban Area, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 605-614.  doi: 10.1007/s00376-006-0605-1
    [13] A.M.Selvam, M.Radhamani, 1994: Signatures of a Universal Spectrum for Nonlinear Variability in Daily Columnar Total Ozone Content, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 335-342.  doi: 10.1007/BF02658153
    [14] Junlin AN, Huan LV, Min XUE, Zefeng ZHANG, Bo HU, Junxiu WANG, Bin ZHU, 2021: Analysis of the Effect of Optical Properties of Black Carbon on Ozone in an Urban Environment at the Yangtze River Delta, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1153-1164.  doi: 10.1007/s00376-021-0367-9
    [15] Lan GAO, Xu YUE, Xiaoyan MENG, Li DU, Yadong LEI, Chenguang TIAN, Liang QIU, 2020: Comparison of Ozone and PM2.5 Concentrations over Urban, Suburban, and Background Sites in China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1297-1309.  doi: 10.1007/s00376-020-0054-2
    [16] Yawei QU, Tijian WANG, Yanfeng CAI, Shekou WANG, Pulong CHEN, Shu LI, Mengmeng LI, Cheng YUAN, Jing WANG, Shaocai XU, 2018: Influence of Atmospheric Particulate Matter on Ozone in Nanjing, China: Observational Study and Mechanistic Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1381-1395.  doi: 10.1007/s00376-018-8027-4
    [17] Junhua YANG, Shichang KANG, Yuling HU, Xintong CHEN, Mukesh RAI, 2022: Influence of South Asian Biomass Burning on Ozone and Aerosol Concentrations Over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1184-1197.  doi: 10.1007/s00376-022-1197-0
    [18] Xuan MA, Lei WANG, 2023: The Role of Ozone Depletion in the Lack of Cooling in the Antarctic Upper Stratosphere during Austral Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 619-633.  doi: 10.1007/s00376-022-2047-9
    [19] H. Kurtulus OZCAN, Erdem BILGILI, Ulku SAHIN, O. Nuri UCAN, Cuma BAYAT, 2007: Modeling of Trophospheric Ozone Concentrations Using Genetically Trained Multi-Level Cellular Neural Networks, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 907-914.  doi: 10.1007/s00376-007-0907-y
    [20] Zou Han, Ji Chongping, Zhou Libo, Wang Wei, Jian Yongxiao, 2001: ENSO Signal in Total Ozone over Tibet, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 231-238.  doi: 10.1007/s00376-001-0016-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 19 November 2013
Manuscript revised: 16 April 2014
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Impacts of Uncertainty in AVOC Emissions on the Summer ROx Budget and Ozone Production Rate in the Three Most Rapidly-Developing Economic Growth Regions of China

    Corresponding author: AN Junling, anjl@mail.iap.ac.cn
  • 1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;
  • 2. University of Chinese Academy of Sciences, Beijing 100049;
  • 3. Anhui Meteorological Bureau, Hefei 230061
Fund Project:  This research was partially supported by the National Natural Science Foundation of China (Grant Nos. 41175105 and 41105098), the Beijing Natural Science Foundation (Grant No. 8144054), a Key Project of CAS (Grant No. XDB05030301), and the Carbon and Nitrogen Cycle Project of IAP, CAS. Special thanks are given to Prof. WANG Yuesi from IAP, CAS, for offering observed data of NOx and O3 in the Beijing-Tianjin-Hebei region. Many thanks are extended to the two anonymous reviewers for their key suggestions.

Abstract: High levels of uncertainty in non-methane volatile organic compound (NMVOC) emissions in China could lead to significant variation in the budget of the sum of hydroxyl (OH) and peroxy (HO2, RO2) radicals (ROx= OH + HO2 + RO2) and the ozone production rate [P(O3)], but few studies have investigated this possibility, particularly with three-dimensional air quality models. We added diagnostic variables into the WRF-Chem model to assess the impact of the uncertainty in anthropogenic NMVOC (AVOC) emissions on the ROx budget and P(O3) in the Beijing-Tianjin-Hebei region, Yangtze River Delta, and Pearl River Delta of China. The WRF-Chem simulations were compared with satellite and ground observations, and previous observation-based model studies. Results indicated that 68% increases (decreases) in AVOC emissions produced 4%-280% increases (2%-80% decreases) in the concentrations of OH, HO2, and RO2 in the three regions, and resulted in 35%-48% enhancements (26%-39% reductions) in the primary ROx production and ~65% decreases (68%-73% increases) of the P(O3) in Beijing, Shanghai, and Guangzhou. For the three cities, the two largest contributors to the ROx production rate were the reaction of O1D + H2O and photolysis of HCHO, ALD2, and others; the reaction of OH + NO2 (71%-85%) was the major ROx sink; and the major contributor to P(O3) was the reaction of HO2 + NO (~65%). Our results showed that AVOC emissions in 2006 from \citeZhang2009 have been underestimated by ~ 68% in suburban areas and by 68% in urban areas, implying that daily and hourly concentrations of secondary organic aerosols and inorganic aerosols could be substantially underestimated, and cloud condensation nuclei could be underestimated, whereas local and regional radiation was overestimated.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint