Advanced Search
Article Contents

A Multi-Scale Urban Atmospheric Dispersion Model for Emergency Management

Fund Project:

doi: 10.1007/s00376-014-3254-9

  • To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere, especially in densely built-up regions with large populations, a multi-scale urban atmospheric dispersion model was established. Three numerical dispersion experiments, at horizontal resolutions of 10 m, 50 m and 3000 m, were performed to estimate the adverse effects of toxic chemical release in densely built-up areas. The multi-scale atmospheric dispersion model is composed of the Weather Forecasting and Research (WRF) model, the Open Source Field Operation and Manipulation software package, and a Lagrangian dispersion model. Quantification of the adverse health effects of these chemical release events are given by referring to the U.S. Environmental Protection Agency's Acute Exposure Guideline Levels. The wind fields of the urban-scale case, with 3 km horizontal resolution, were simulated by the Beijing Rapid Update Cycle system, which were utilized by the WRF model. The sub-domain-scale cases took advantage of the computational fluid dynamics method to explicitly consider the effects of buildings. It was found that the multi-scale atmospheric dispersion model is capable of simulating the flow pattern and concentration distribution on different scales, ranging from several meters to kilometers, and can therefore be used to improve the planning of prevention and response programs.
  • Acquesta, A. D., E. Y. Sanchez, A. Porta, P. M. Jocovkis, 2011: A method for computing the damage level due to the exposure to an airborne chemical with a time-varying concentration. Risk Analysis, 31(10), 1451-1469.
    Baik, J. J., S. B. Park, J. J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteor. Climatol., 48, 1667-1681.
    Berrouk, A. S., D. E. Stock, D. Laurence, J. J. Riley, 2008: Heavy particle dispersion from a point source in turbulent pipe flow. Int. J. Multiphase Flow, 34(11), 916-923.
    Bowonder, B., T. Miyake, 1988: Managing hazardous facilities: Lessons from the Bhopal accident. J. Hazard. Mater., 19(4), 237-269.
    Chen, B. C., S. H. Liu, Y. C. Miao, S. Wang, Y. Li, 2013: Construction and validation of an urban area flow and dispersion model on building scales. Acta Meteorologica Sinica., 27(7), 923-941.
    Fang, X. Y., and Coauthors, 2004: The multi-scale numerical modeling system for research on the relationship between urban planning and meteorological environment. Adv. Atmos. Sci., 21(2), 103-112, doi: 10.1007/BF02915684.
    Ferziger, J. H., M. Peric, 2001: Computational Methods for Fluid Dynamics. 3rd ed., Springer, 188-202.
    Fitch, J. P., E. Raber, R. R. Imbro, 2003: Technology challenges in responding to biological or chemical attacks in the civilian sector. Science, 302, 1350-1354.
    Fu, W., H. Fu, K. Skøtt, M. Yang, 2008: Modeling the spill in the Songhua River after the explosion in the petrochemical plant in Jilin. Environ. Sci. Pollut. Res., 15(4), 178-181.
    Hanna, S. R., O. R. Hansen, M. Ichard, D. Strimaitis, 2009: CFD model simulation of dispersion from chlorine railcar release in industrial and urban areas. Atmos. Environ., 43, 262-270.
    Langner, C., O. A. Klemm, 2011: A comparison of model performance between AERMOD and AUSTAL2000. J. Air & Waste Manage. Assoc., 61, 640-646.
    Li, F. Y., J. Bi, L. Huang, C. S. Qu, J. Yang, Q. M. Bu, 2010: Mapping human vulnerability to chemical accidents in the vicinity of chemical industry parks. Journal of Hazardous Materials, 179, 500-506.
    Li, L., F. Hu, J. Jiang, X. Cheng, 2007: An application of the RAMS/FLUENT system on the multi-scale numerical simulation of the urban surface layer——A preliminary study. Adv. Atmos. Sci., 24(3), 271-280, doi: 10.1007/s00376-007-0271-y.
    Miao, S. G., W. M. Jiang, X. Y. Wang, W. L. Guo, 2006: Impact assessment of urban meteorology and the atmospheric environment using urban sub-domain planning. Bound.-Layer Meteor., 118, 133-150.
    Miao, Y. C., S. H. Liu, B. C. Chen, B. H. Zhang, S. Wang, S. Y. Li, 2013: Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model. Adv. Atmos. Sci., 30(7), 1663-1678, doi: 10.1007/s00376-013-2234-9.
    Miao, Y. C., S. H. Liu, Y. J. Zheng, S. Wang, Y. Li, 2014: Numerical study of traffic pollutant dispersion within different street canyon configurations. Adv. Meteor., Article ID 458671, doi: 10.1155/2014/458671.
    Okumura, T., N. Takasu, S. Ishimatsu, S. Miyanoki, A. Mitsuhashi, K. Kumada, K. Tanaka, S. Hinohara, 1996: Report on 640 victims of the Tokyo subway sarin attack. Annals of Emergency Medicine, 28(3), 129-135.
    Santiago, J. L., F. Mart\'ín, 2008: SLP-2D: A new Lagrangian particle model to simulate pollutant dispersion in street canyons. Atmos. Environ., 42, 3927-3936.
    Stage, S. A., 2004: Determination of acute exposure guideline levels in a dispersion model.Journal of the Air & Waste Management Association, 54, 49-59.
    Stohl, A., C. Foster, A. Frank, P. Seibert, G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 2461-2474.
    Tewari, M., H. Kusaka, F. Chen, W. J. Coirier, S. Kim, A. A. Wyszogrodzki, T. T. Warner, 2010: Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmospheric Research., 96, 656-664.
    Thompson, R. S., 1993: Building amplification factors for sources near buildings-a wind-tunnel study. Atmos. Environ., 27A(15), 2313-2325.
    Wang, H., J. Sun, S. Fan, X. Y. Huang, 2013: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52(5), 889-902.
    Wilson, J. D., B. L. Sawford, 1996: Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Bound-Layer Meteor., 78, 191-210.
    Zhang, Z., Q. Chen, 2007: Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos. Environ., 41(25), 5236-5248.
  • [1] MIAO Yucong, LIU Shuhua, CHEN Bicheng, ZHANG Bihui, WANG Shu, LI Shuyan, 2013: Simulating Urban Flow and Dispersion in Beijing by Coupling a CFD Model with the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1663-1678.  doi: 10.1007/s00376-013-2234-9
    [2] Marcus JOHNSON, Ming XUE, Youngsun JUNG, 2024: Comparison of a Spectral Bin and Two Multi-Moment Bulk Microphysics Schemes for Supercell Simulation: Investigation into Key Processes Responsible for Hydrometeor Distributions and Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 784-800.  doi: 10.1007/s00376-023-3069-7
    [3] Ui-Yong BYUN, Jinkyu HONG, Song-You HONG, Hyeyum Hailey SHIN, 2015: Numerical Simulations of Heavy Rainfall over Central Korea on 21 September 2010 Using the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 855-869.  doi: 10.1007/s00376-014-4075-6
    [4] Yuqiang SONG, Hongnian LIU, Xueyuan WANG, Ning ZHANG, Jianning SUN, 2016: Numerical Simulation of the Impact of Urban Non-uniformity on Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 783-793.  doi: 10.1007/s00376-016-5042-1
    [5] Dongmei XU, Feifei SHEN, Jinzhong MIN, Aiqing SHU, 2021: Assimilation of GPM Microwave Imager Radiance for Track Prediction of Typhoon Cases with the WRF Hybrid En3DVAR System, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 983-993.  doi: 10.1007/s00376-021-0252-6
    [6] SUN Jianhua, ZHAO Sixiong, XU Guangkuo, MENG Qingtao, 2010: Study on a Mesoscale Convective Vortex Causing Heavy Rainfall during the Mei-yu Season in 2003, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1193-1209.  doi: 10.1007/s00376-009-9156-6
    [7] LI Lei, HU Fei, JIANG Jinhua, CHENG Xueling, 2007: An Application of the RAMS/FLUENT System on the Multi-Scale Numerical Simulation of the Urban Surface Layer---A Preliminary Study, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 271-280.  doi: 10.1007/s00376-007-0271-y
    [8] Li Xin, Hu Fei, Liu Gang, Hong Zhongxiang, 2001: Multi-scale Fractal Characteristics of Atmospheric Boundary-Layer Turbulence, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 787-792.
    [9] Wen CHEN, Renhe ZHANG, Renguang WU, Zhiping WEN, Liantong ZHOU, Lin WANG, Peng HU, Tianjiao MA, Jinling PIAO, Lei SONG, Zhibiao WANG, Juncong LI, Hainan GONG, Jingliang HUANGFU, Yong LIU, 2023: Recent Advances in Understanding Multi-scale Climate Variability of the Asian Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1429-1456.  doi: 10.1007/s00376-023-2266-8
    [10] YANG Hongping, Jian ZHANG, Carrie LANGSTON, 2009: Synchronization of Radar Observations with Multi-Scale Storm Tracking, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 78-86.  doi: 10.1007/s00376-009-0078-0
    [11] Hengyi WENG, 2012: Impacts of Multi-Scale Solar Activity on Climate. Part I: Atmospheric Circulation Patterns and Climate Extremes, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 867-886.  doi: 10.1007/s00376-012-1238-1
    [12] WANG Gaili, WONG Waikin, LIU Liping, WANG Hongyan, 2013: Application of Multi-Scale Tracking Radar Echoes Scheme in Quantitative Precipitation Nowcasting, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 448-460.  doi: 10.1007/s00376-012-2026-7
    [13] FANG Xiaoyi, JIANG Weimei, MIAO Shiguang, ZHANG Ning, XU Min, JI Chongping, CHEN Xianyan, WEI Jianmin, WANG Zhihua, WANG Xiaoyun, 2004: The Multi-Scale Numerical Modeling System for Research on the Relationship between Urban Planning and Meteorological Environment, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 103-112.  doi: 10.1007/BF02915684
    [14] ZHANG Hanbin, CHEN Jing, ZHI Xiefei, WANG Yi, WANG Yanan, 2015: Study on Multi-Scale Blending Initial Condition Perturbations for a Regional Ensemble Prediction System, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1143-1155.  doi: 10.1007/s00376-015-4232-6
    [15] Yuanwen ZHANG, Guiwan CHEN, Jian LING, Shenming FU, Chongyin LI, 2021: A Case Study on MJO Energy Transport Path in a Local Multi-scale Interaction Framework, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1929-1944.  doi: 10.1007/s00376-021-1098-7
    [16] Yan GAO, Jiali FENG, Xin XIA, Jian SUN, Yulong MA, Dongmei CHEN, Qilin WAN, 2023: Multi-scale Incremental Analysis Update Scheme and Its Application to Typhoon Mangkhut (2018) Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 95-109.  doi: 10.1007/s00376-022-1425-7
    [17] ZHANG Zuqiang, ZHANG Renhe, Song YANG, 2007: Roles of Multi-Scale Disturbances over the Tropical North Pacific in the Turnabout of 1997--98 El Nino, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 581-590.  doi: 10.1007/s00376-007-0581-0
    [18] Jianguo LIU, Binghao JIA, Zhenghui XIE, Chunxiang SHI, 2016: Ensemble Simulation of Land Evapotranspiration in China Based on a Multi-Forcing and Multi-Model Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 673-684.  doi: 10.1007/s00376-016-5213-0
    [19] Ji-Hyun HA, Dong-Kyou LEE, 2012: Effect of Length Scale Tuning of Background Error in WRF-3DVAR System on Assimilation of High-Resolution Surface Data for Heavy Rainfall Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1142-1158.  doi: 10.1007/s00376-012-1183-z
    [20] Hengyi WENG, 2012: Impacts of Multi-Scale Solar Activity on Climate. Part II: Dominant Timescales in Decadal-Centennial Climate Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 887-908.  doi: 10.1007/s00376-012-1239-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 23 December 2013
Manuscript revised: 07 March 2014
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Multi-Scale Urban Atmospheric Dispersion Model for Emergency Management

    Corresponding author: LIU Shuhua, lshuhua@pku.edu.cn
  • 1. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871;
  • 2. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Fund Project:  This work was supported by the Public Welfare Special Fund Program (Meteorology) of the Chinese Ministry of Finance (Grant No. GYHY201106033). We thank the Beijing Meteorological Bureau for providing the forecasts of the BJ-RUC system and the observations.

Abstract: To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere, especially in densely built-up regions with large populations, a multi-scale urban atmospheric dispersion model was established. Three numerical dispersion experiments, at horizontal resolutions of 10 m, 50 m and 3000 m, were performed to estimate the adverse effects of toxic chemical release in densely built-up areas. The multi-scale atmospheric dispersion model is composed of the Weather Forecasting and Research (WRF) model, the Open Source Field Operation and Manipulation software package, and a Lagrangian dispersion model. Quantification of the adverse health effects of these chemical release events are given by referring to the U.S. Environmental Protection Agency's Acute Exposure Guideline Levels. The wind fields of the urban-scale case, with 3 km horizontal resolution, were simulated by the Beijing Rapid Update Cycle system, which were utilized by the WRF model. The sub-domain-scale cases took advantage of the computational fluid dynamics method to explicitly consider the effects of buildings. It was found that the multi-scale atmospheric dispersion model is capable of simulating the flow pattern and concentration distribution on different scales, ranging from several meters to kilometers, and can therefore be used to improve the planning of prevention and response programs.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint