Advanced Search
Article Contents

Surface Rainfall and Cloud Budgets Associated with Mei-yu Torrential Rainfall over Eastern China during June 2011

Fund Project:

doi: 10.1007/s00376-014-3256-7

  • Surface rainfall and cloud budgets associated with three heavy rainfall events that occurred over eastern China during the mei-yu season in June 2011 were analyzed using 2D cumulus ensemble model simulation data. Model domain mean rainfall showed three peaks in response to three prescribed ascending motion maxima, primarily through the mean moisture convergence during the torrential rainfall period. Prescribed ascending motion throughout the troposphere produced strong convective rainfall during the first (9 June) and third (17-18 June) rainfall events, whereas strong prescribed ascending motion in the mid and upper troposphere and weak subsidence near the surface generated equally important stratiform and convective rainfall during the second rainfall event (14 June). The analysis of surface rainfall budgets reveals that convective rainfall was associated with atmospheric drying during the first event and moisture convergence during the third event. Both stratiform and convective rainfall responded primarily to moisture convergence during the second event. An analysis of grid data shows that the first and third mean rainfall maxima had smaller horizontal scales of the precipitation system than the second.
  • Chen, S.-J., Y.-H. Kuo, W. Wang, Z.-Y. Tao, B. Cui, 1998:A case modeling study of heavy rainstorms along the Mei-yu front. Mon. Wea. Rev., 126, 2330-2351.
    Chou, M.-D., M. J. Suarez, 1994:An efficient thermal infrared radiation parameterization for use in general circulation model. NASA Tech. Memo. 104606, Vol. 3, 85 pp. [Available online at NASA/Goddard Space Flight Center, Code 913, Greenbelt, MD 20771.]
    Chou, M.-D., D. P. Kratz, W. Ridgway, 1991:Infrared radiation parameterization in numerical climate models. J. Climate, 4, 424-437.
    Chou, M.-D., M. J. Suarez, C.-H. Ho, M. M.-H. Yan, K.-T. Lee, 1998:Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J. Climate, 11, 201-214.
    Cui, X., 2008:A cumulus ensemble modeling study of diurnal variations of tropical convective and stratiform rainfall. J. Geophys. Res., 113, D02113, doi: 10.1029/2007JD008990.
    Cui, X. P., X. F. Li, 2006:Role of surface evaporation in surface rainfall processes. J. Geophys. Res., 111, D17112, doi: 10.1029/2005JD006876.
    Gao, S. T., 2007: A three dimensional dynamic vorticity vector associated with tropical oceanic convection. J. Geophys. Res., 113, doi: 10.1029/2006JD008247.
    Gao, S. T., X. F. Li, 2008a:Cloud-Resolving Modeling of Convective Processes. Springer, Dordrecht, 206 pp.
    Gao, S. T., X. F. Li, 2008b:Responses of tropical deep convective precipitation systems and their associated convective and stratiform regions to the large-scale forcing. Quart. J. Roy. Meteor. Soc., 134, 2127-2141.
    Gao, S. T., X. F. Li, 2010:Precipitation equations and their applications to the analysis of diurnal variation of tropical oceanic rainfall. J. Geophys. Res., 115, D08204, doi: 10.1029/2009JD012452.
    Gao, S. T., X. F. Li, 2011:Can water vapour process data be used to estimate precipitation efficiency. Quart. J. Roy. Meteor. Soc., 137, 969-978.
    Gao, S. T., S. X. Zhao, X. P. Zhou, S. Q. Sun, S. Y. Tao, 2003:Progress of research on sub-synoptic scale and mesoscale torrential rain systems. Chinese J. Atmos. Sci., 27, 618-627. (in Chinese)
    Gao, S. T., F. Ping, X. F. Li, W.-K. Tao, 2004:A convective vorticity vector associated with tropical convection: A two-dimensional cumulus ensemble modeling study. J. Geophys. Res., 109, D14106, doi: 10.1029/2004JD004807.
    Gao, S. T., X. P. Cui, Y. S. Zhou, X. F. Li, 2005a:Surface rainfall processes as simulated in a cloud resolving model. J. Geophys. Res., 110, D10202, doi: 10.1029/2004JD005467.
    Gao, S. T., X. P. Cui, Y. S. Zhou, X. F. Li, W.-K. Tao, 2005b:A modeling study of moist and dynamic vorticity vectors associated with 2D tropical convection. J. Geophys. Res., 110, D17104, doi: 10.1029/2004JD005675.
    Gao, S. T., L. K. Ran, X. F. Li, 2006:Impacts of ice microphysics on rainfall and thermodynamic processes in the tropical deep convective regime: A 2D cumulus ensemble modeling study. Mon. Wea. Rev., 134, 3015-3024.
    Gao, S. T., X. F. Li, W.-K. Tao, C.-L. Shie, S. Lang, 2007:Convective and moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cumulus ensemble simulation. J. Geophys. Res., 112, D01105, doi: 10.1029/ 2006JD007179.
    Grabowski, W. W., X. Wu, M. W. Moncrieff, W. D. Hall, 1998:Cumulus ensemble model of tropical cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 3264-3282.
    Hu, G. Q., Y. H. Ding, 2003:A study on the energy and water cycles over Changjiang-Huaihe River Basins during the 1991 heavy rain periods. Acta Meteorologica Sinica, 61, 508-526.
    Khairoutdinov, M. F., D. A. Randall, 2003:Cumulus ensemble modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607-625.
    Krueger, S. K., Q. Fu, K. N. Liou, H.-N. S. Chin, 1995:Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281-287.
    Li, X., S. Gao, 2011: Precipitation Modeling and Quantitative Analysis. Springer, 240 pp.
    Li, X., X. Shen, 2013:Rain microphysical budget over tropical deep convective regime. J. Meteor. Soc. Japan, 91, 801-815.
    Li, X. F., C.-H. Sui, K.-M. Lau, M.-D. Chou, 1999:Large-scale forcing and cloud-radiation interaction in the tropical deep convective regime. J. Atmos. Sci., 56, 3028-3042.
    Li, X. F., C.-H. Sui, K.-M. Lau, 2002a:Precipitation efficiency in the tropical deep convective regime: A 2-D cloud resolving modeling study. J. Meteor. Soc. Japan, 80, 205-212.
    Li, X. F., C.-H. Sui, K.-M. Lau, 2002b:Dominant cloud microphysical processes in a tropical oceanic convective system: A 2-D cloud resolving modeling study. Mon. Wea. Rev., 130, 2481-2491.
    Li, X., X. Shen, J. Liu, 2011:A partitioning analysis of tropical rainfall based on cloud budget. Atmospheric Research, 102, 444-451.
    Lin, Y.-L., R. D. Farley, H. D. Orville, 1983:Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology, 22, 1065-1092.
    Ninomiya, K., T. Akiyama, 1992:Multi-scale feature of Baiu, the summer monsoon over Japan and the East Asia. J. Meteor. Soc. Japan, 70, 467-495.
    Ping, F., Z. X. Luo, X. F. Li, 2007:Microphysical and radiative effects of ice microphysics on tropical equilibrium states: A two-dimensional cumulus ensemble modeling study. Mon. Wea. Rev., 135, 2794-2802.
    Ping, F., Z. X. Luo, X. F. Li, 2008:Kinematics, cloud microphysics and spatial structures of tropical cloud clusters: A two-dimensional cloud-resolving modeling study. Atmospheric Research, 88, 323-336.
    Rutledge, S. A., P. V. Hobbs, 1983:The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the "seeder-feeder" process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185-1206.
    Rutledge, S. A., P. V. Hobbs, 1984:The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949-2972.
    Shen, X. Y., Y. Wang, X. F. Li, 2011:Effects of vertical wind shear and cloud radiative processes on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China. Quart. J. Roy. Meteor. Soc., 137, 236-249.
    Soong, S. T., Y. Ogura, 1980:Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 2035-2050.
    Soong, S. T., W.-K. Tao, 1980:Response of deep tropical cumulus clouds to mesoscale processes. J. Atmos. Sci., 37, 2016-2034.
    Sui, C.-H., K.-M. Lau, W.-K. Tao, J. Simpson, 1994:The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. J. Atmos. Sci., 51, 711-728.
    Sui, C.-H., X. Li, K.-M. Lau, 1998:Radiative-convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci., 55, 2345-2359.
    Sui, C.-H., X. Li, M.-J. Yang, H.-L. Huang, 2005:Estimation of oceanic precipitation efficiency in cloud models. J. Atmos. Sci., 62, 4358-4370.
    Sui, C.-H., X. Li, M.-J. Yang, 2007:On the definition of precipitation efficiency. J. Atmos. Sci., 64, 4506-4513.
    Tao, S., 1996:Some issues on monsoon studies. Outlook on Advanced Atmospheric Sciences, Meteorological Press, Beijing, 35-36. (in Chinese)
    Tao, W.-K., S.-T. Soong, 1986:The study of the response of deep tropical clouds to mesoscale processes: Three-dimensional numerical experiments. J. Atmos. Sci., 43, 2653-2676.
    Tao, W.-K., J. Simpson, 1993:The Goddard Cumulus Ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 35-72.
    Tao, W.-K., J. Simpson, S.-T. Soong, 1987:Statistical properties of a cloud ensemble: A numerical study. J. Atmos. Sci., 44, 3175-3187.
    Tao, W. -K, J. Simpson, M. McCumber, 1989:An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231-235.
    Tao, W.-K., J. Simpson, C.-H. Sui, B. Ferrier, S. Lang, J. Scala, M.-D. Chou, K. Pickering, 1993:Heating, moisture and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50, 673-690.
    Tompkins, A. M., 2000:The impact of dimensionality on long-term cumulus ensemble model simulations. Mon. Wea. Rev., 128, 1521-1535.
    Wang, D. H., X. F. Li, W.-K. Tao, Y. Liu, H. G. Zhou, 2009:Torrential rainfall processes associated with a landfall of severe tropical Storm Bilis (2006): A two-dimensional cumulus ensemble modeling study. Atmospheric Research, 91, 94-104.
    Wang, J.-J., X. Li, L. Carey, 2007:Evolution, structure, cloud microphysical and surface rainfall processes of a monsoon convection during the South China Sea Monsoon Experiment. J. Atmos. Sci., 64, 360-380.
    Wang, Y., X. Shen, X. Li, 2010:Microphysical and radiative effects of ice clouds on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China. Atmospheric Research, 97, 35-46.
    Wang, Z., G. Q. Zhai, K. Gao, 2003:Analysis and numerical simulation of a meso-scale vortex in the middle reaches of the Yangtze River. Acta Meteorologica Sinica, 61, 66-77.
    Wu, X. Q., W. W. Grabowski, M. W. Moncrieff, 1998:Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: Two-dimensional modeling study. J. Atmos. Sci., 55, 2693-2714.
    Xu, K.-M., and Coauthors, 2002:An intercomparison of cloud resolving models with the Atmospheric Radiation Measurement summer 1997 Intensive Observation Period data. Quart. J. Roy. Meteor. Soc., 128, 593-624.
    Xu, X., F. Xu, B. Li, 2007:A cumulus ensemble modeling study of a torrential rainfall event over China. J. Geophys. Res., 112, D17204, doi: 10.1029/2006JD008275.
    Yue, C., S. Shou, X. Li, 2009:Water vapor, cloud, and surface rainfall budgets associated with the landfall of Typhoon Krosa (2007): A two-dimensional cumulus ensemble modeling study. Adv. Atmos. Sci., 26, 1198-1208, doi: 10.1007/s00376-009-8135-2.
    Zhai, G. Q., Z. Wang, B. He, 2003:Formation and evolution analysis of the mesoscale vortex group over the middle and lower reaches of the Yangtze River during Meiyu season. Acta Meteorologica Sinica, 61, 661-672.
    Zhai, G., L. Zhou, Z. Wang, 2007:Analysis of a group of weak small-scale vortices in the planetary boundary layer in the Mei-yu front. Adv. Atmos. Sci., 24, 399-408, doi: 10.1007/s00376-007-0399-9.
  • [1] Yongjie HUANG, Yaping WANG, Xiaopeng CUI, 2019: Differences between Convective and Stratiform Precipitation Budgets in a Torrential Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 495-509.  doi: 10.1007/s00376-019-8159-1
    [2] LI Xiaofan, SHEN Xinyong, LIU Jia, 2014: Effects of Doubled Carbon Dioxide on Rainfall Responses to Large-Scale Forcing: A Two-Dimensional Cloud-Resolving Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 525-531.  doi: 10.1007/s00376-013-3030-2
    [3] SU Qin, LU Riyu, LI Chaofan, 2014: Large-scale Circulation Anomalies Associated with Interannual Variation in Monthly Rainfall over South China from May to August, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 273-282.  doi: 10.1007/s00376-013-3051-x
    [4] Kalim ULLAH, GAO Shouting, 2012: Moisture Transport over the Arabian Sea Associated with Summer Rainfall over Pakistan in 1994 and 2002, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 501-508.  doi: 10.1007/s00376-011-0200-y
    [5] Lingyun LOUSchool, of Earth, Zhejiang University, Xiaofan LISchool, 2016: Radiative Effects on Torrential Rainfall during the Landfall of Typhoon Fitow (2013), ADVANCES IN ATMOSPHERIC SCIENCES, 33, 101-109.  doi: 10.1007/s00376-015-5139-y
    [6] YUE Caijun, GAO Shouting, LIU Lu, LI Xiaofan, 2015: A Diagnostic Study of the Asymmetric Distribution of Rainfall during the Landfall of Typhoon Haitang (2005), ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1419-1430.  doi: 10.1007/s00376-015-4246-0
    [7] Chibuike Chiedozie IBEBUCHI, 2023: Circulation Patterns Linked to the Positive Sub-Tropical Indian Ocean Dipole, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 110-128.  doi: 10.1007/s00376-022-2017-2
    [8] MA Leiming, DUAN Yihong, ZHU Yongti, 2004: The Structure and Rainfall Features of Tropical Cyclone Rammasun (2002), ADVANCES IN ATMOSPHERIC SCIENCES, 21, 951-963.  doi: 10.1007/BF02915597
    [9] Abebe Kebede, Kirsten Warrach-sagi, Thomas Schwitalla, Volker Wulfmeyer, Tesfaye Amdie, Markos Ware, 2024: Assessment of Seasonal Rainfall Prediction in Ethiopia: Evaluating a Dynamic Recurrent Neural Network to Downscale ECMWF-SEAS5 Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3345-1
    [10] John ABBOT, Jennifer MAROHASY, 2012: Application of Artificial Neural Networks to Rainfall Forecasting in Queensland, Australia, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 717-730.  doi: 10.1007/s00376-012-1259-9
    [11] Yu DU, Yian SHEN, Guixing CHEN, 2022: Influence of Coastal Marine Boundary Layer Jets on Rainfall in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 782-801.  doi: 10.1007/s00376-021-1195-7
    [12] REN Baohua, LU Riyu, XIAO Ziniu, 2004: A Possible Linkage in the Interdecadal Variability of Rainfall over North China and the Sahel, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 699-707.  doi: 10.1007/BF02916367
    [13] Riyu LU, Saadia HINA, Xiaowei HONG, 2020: Upper- and Lower-tropospheric Circulation Anomalies Associated with Interannual Variation of Pakistan Rainfall during Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1179-1190.  doi: 10.1007/s00376-020-0137-0
    [14] Chen SHENG, Bian HE, Guoxiong WU, Yimin LIU, Shaoyu ZHANG, 2022: Interannual Influences of the Surface Potential Vorticity Forcing over the Tibetan Plateau on East Asian Summer Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1050-1061.  doi: 10.1007/s00376-021-1218-4
    [15] Meiying DONG, Chunxiao JI, Feng CHEN, Yuqing WANG, 2019: Numerical Study of Boundary Layer Structure and Rainfall after Landfall of Typhoon Fitow (2013): Sensitivity to Planetary Boundary Layer Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 431-450.  doi: 10.1007/s00376-018-7281-9
    [16] Song YANG, Eric A.SMITH, 2005: Resolving SSM/I-Ship Radar Rainfall Discrepancies from AIP-3, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 903-914.  doi: 10.1007/BF02918689
    [17] Linbin He, Weiyi Peng, Yu Zhang, Shiguang Miao, Siqi Chen, Jiajing Li, Duanzhou Shao, Xutao Zhang, 2024: Comparison of Adaptive Simulation Observation Experiments of the Heavy Rainfall in South China and Sichuan Basin, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3114-1
    [18] HAN Jinping, ZHANG Renhe, 2009: The Dipole Mode of the Summer Rainfall over East China during 1958--2001, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 727-735.  doi: 10.1007/s00376-009-9014-6
    [19] Min-Hee LEE, Chang-Hoi HO, Joo-Hong KIM, 2010: Influence of Tropical Cyclone Landfalls on Spatiotemporal Variations in Typhoon Season Rainfall over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 443-454.  doi: 10.1007/s00376-009-9106-3
    [20] ZHOU Lian-Tong, Chi-Yung TAM, ZHOU Wen, Johnny C. L. CHAN, 2010: Influence of South China Sea SST and the ENSO on Winter Rainfall over South China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 832-844.  doi: 10.1007/s00376--009-9102-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 25 December 2013
Manuscript revised: 09 May 2014
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Surface Rainfall and Cloud Budgets Associated with Mei-yu Torrential Rainfall over Eastern China during June 2011

    Corresponding author: LI Xiaofan, xiaofanli@zju.edu.cn
  • 1. Department of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310027;
  • 2. Hangzhou Weather Bureau, Hangzhou, Zhejiang 310051;
  • 3. Aviation Agency Meteorological Observatory of Zhejiang, Hangzhou, Zhejiang 311207
Fund Project:  The authors thank Dr. W.-K. TAO at NASA/GSFC for his cloud-resolving model and the three anonymous reviewers for their constructive comments, which improved the quality of the manuscript significantly. This study was supported by the National Natural Science Foundation of China (Grant No. 41175047) and the National Key Basic Research and Development Project of China (Grant No. 2013CB430100).

Abstract: Surface rainfall and cloud budgets associated with three heavy rainfall events that occurred over eastern China during the mei-yu season in June 2011 were analyzed using 2D cumulus ensemble model simulation data. Model domain mean rainfall showed three peaks in response to three prescribed ascending motion maxima, primarily through the mean moisture convergence during the torrential rainfall period. Prescribed ascending motion throughout the troposphere produced strong convective rainfall during the first (9 June) and third (17-18 June) rainfall events, whereas strong prescribed ascending motion in the mid and upper troposphere and weak subsidence near the surface generated equally important stratiform and convective rainfall during the second rainfall event (14 June). The analysis of surface rainfall budgets reveals that convective rainfall was associated with atmospheric drying during the first event and moisture convergence during the third event. Both stratiform and convective rainfall responded primarily to moisture convergence during the second event. An analysis of grid data shows that the first and third mean rainfall maxima had smaller horizontal scales of the precipitation system than the second.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint