Advanced Search
Article Contents

The Hiatus and Accelerated Warming Decades in CMIP5 Simulations

Fund Project:

doi: 10.1007/s00376-014-3265-6

  • Observed hiatus or accelerated warming phenomena are compared with numerical simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archives, and the associated physical mechanisms are explored based on the CMIP5 models. Decadal trends in total ocean heat content (OHC) are strongly constrained by net top-of-atmosphere (TOA) radiation. During hiatus decades, most CMIP5 models exhibit a significant decrease in the SST and upper OHC and a significant increase of heat penetrating into the subsurface or deep ocean, opposite to the accelerated warming decades. The shallow meridional overturning of the Pacific subtropical cell experiences a significant strengthening (slowdown) for the hiatus (accelerated warming) decades associated with the strengthened (weakened) trade winds over the tropical Pacific. Both surface heating and ocean dynamics contribute to the decadal changes in SST over the Indian Ocean, and the Indonesian Throughflow has a close relationship with the changes of subsurface temperature in the Indian Ocean. The Atlantic Meridional Overturing Circulation (Antarctic Bottom Water) tends to weaken (strengthen) during hiatus decades, opposite to the accelerated warming decades. In short, the results highlight the important roles of air-sea interactions and ocean circulations for modulation of surface and subsurface temperature.
  • Arora, V. K., and Coauthers, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi: 10.1029/2010GL046270.
    Bao, Q., and Coanthers, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Advances in Atmospheric Sciences, 30, 561-576.
    Brix, H., R. Gerdes, 2003: North Atlantic deep water and Antarctic bottom water: Their interaction and influence on the variability of the global ocean circulation. J. Geophys. Res., 108(C2), 1-18, doi: 10.1029/2002JC001335.
    Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi: 10.1029/2005JD006548.
    Clarke, A. J., X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 1224-1235.
    Collins, M., S. F. B.Tett, C. Cooper, 2001: The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 17, 61-81, doi: 10.1007/s003820000094.
    Collins, W. J. and Coauthors, 2011: Development and evaluation of an Earth-system model-HadGEM2. Geosci. Model Dev., 4, 1051-1075.
    Dai, A. G., 2012: The influence of the Inter-decadal Pacific Oscillation on US precipitation during 1923-2010. Climate Dyn., 41, 633-646.
    Delworth, T. L., M. E. Mann, 2000: Observed and simulated multi-decadal variability in the Northern Hemisphere. Climate Dyn., 16, 661-676.
    Delworth, T. L., R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13(9), 1481-1495.
    Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24(13), 3484-3519.
    Dufresne, J. L., and Coauthors, 2012: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 2123-2165, doi: 10.1007/s00382-012-1636-1.
    Dunne, J. P., and Coauthors, 2012: GFDL's ESM2 Global Coupled Climate-Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. J. Climate, 25(19).
    Easterling, D. R., M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, doi: 10.1029/ 2009GL037810.
    Eden, C., T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865-1997). J. Climate, 14(5), 676-691.
    Gent, P. R., and Coauthors, 2011: The Community Climate System Model Version 4. J. Climate, 24, 4973-4991. doi: 10.1175/2011JCLI4083.1
    Gordon, A. L., R. D. Susanto, A. Ffield, 1999: Throughflow within Makassar Strait. Geophys. Res. Lett., 26, 3325-3328.
    Hansen, J., R. Ruedy, M. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, T. Karl, 2001: A closer look at United States and global surface temperature change. J. Geophys. Res., 106(D20), 23947-23963.
    Held, I. M., 2013: Climate science: The cause of the pause. Nature, 501, 318-319.
    Ilyina, T., and Coauthors, 2013: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. Journal of Advances in Modeling Earth Systems, 5(2), 287-315.
    Ishii, M., M. Kimoto, 2009: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr., 65, 287-299.
    Jones, C. D. and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543-570, doi: 10.5194/gmd-4-543-2011.
    Katsman, C. A., G. J. van Oldenborgh, 2011: Tracing the upper ocean's "missing heat". Geophys. Res. Lett., 38, L14610, doi: 10.1029/2011GL048417.
    Kaufmann, R. K., H. Kauppib, M. L. Mann, J. H. Stock, 2011: Reconciling anthropogenic climate change with observed temperature 1998-2008. Proc. Natl. Acad. Sci. USA, 108(29), 11790-11793.
    Klein, S. A., B. J. Soden, N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917-932.
    Klinger, B. A., J. P. McCreary, R. Kleeman, 2002: The relationship between oscillating subtropical wind stress and equatorial temperature. J. Phys. Oceanogr., 32, 1507-1521.
    Knight, J., and Coauthors, 2009: Do global temperature trends over the last decade falsify climate predictions? Bull. Amer. Meteor. Soc., 90, S20-S21.
    Knight, J. R., R. J. Allan, C. K. Folland , M. Vellinga, M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708. doi: 10.1029/2005GL024233.
    Knox, R. S., D. H. Douglass, 2010: Recent energy balance of earth. International Journal of Geosciences, 1(3), 99-101, doi: 10.4236/ijg.2010.13013.
    Kosaka, Y., S. P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403-407.
    Kouketsu, S., T. Doi, T. Kawano, S. Masuda, 2011: Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J. Geophys. Res., 116, C03012, doi: 10.1029/2010JC006464.
    Latif, M., C. Bȍning, J. Willebrand , A. Biastoch, J. Dengg, N. Keenlyside, U. Schweckendiek, 2006: Is the thermohaline circulation changing? J. Climate, 19(18), 4631-4637.
    Lau, N. C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78(1), 21-33.
    Lau, N. C., M. J. Nath, 2001: Impact of ENSO on SST variability in the North pacific and North Atlantic: Seasonal dependence and role of extratropical sea-air coupling. J. Climate, 14(13), 2846-2866.
    Lee, T., M. J. McPhaden, 2008: Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett., 35(1), L01605, doi: 10.1029/2007GL032419.
    Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, A. V. Mishonov, 2009: Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi: 10.1029/2008GL 037155.
    Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010. Geophys. Res. Lett., 39, L10603, doi: 10.1029/2012GL051106.
    Liu, J. L., M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, RG2005, doi: 10.1029/2005RG000172.
    Lyman, J. M., S. A. Good, V. V. Gouretski, M. Ishii, G. C. Johnson, M. D. Palmer, D. M. Smith, J. K. Willis, 2010: Robust warming of the global upper ocean. Nature, 465, 334-337, doi: 10.1038/nature09043.
    McPhaden, M. J., D. X. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603-608.
    McPhaden, M. J., D. X. Zhang, 2004: Pacific ocean circulation rebounds. Geophys. Res. Lett., 31, L18301, doi: 10.1029/2004GL020727.
    Meehl, G. A., J. M. Arblaster, J. Fasullo, A. Hu, K. E. Trenberth, 2011: Model-based evidence of deep ocean heat uptake during surface temperature hiatus periods. Nature Climate Change, 1, 360-364, doi: 10.1038/NCLIMATE1229.
    Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, K. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Climate, 26, 7298-7310, doi: 10.1175/JCLI-D-12-00548.1.
    Meyers, G., 1996: Variation of Indonesian throughflow and the El Niňo-Southern Oscillation. J. Geophys. Res., 101(C5), 12255-12263, doi: 10.1029/95JC03729.
    Miller, R. L., and Coauthors, 2014: CMIP5 historical simulations (1850-2012) with GISS ModelE2. Journal of Advances in Modeling Earth Systems.
    Nigam, S., H. S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian oceans. Part I: COADS observations. J. Climate, 6, 657-676.
    Nonaka, M., S. P. Xie, J. P. McCreay, 2002: Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys. Res. Lett., 29(7), 1116, doi: 10.1029/2001GL013717.
    Otterå, O. H., M. Bentsen, H. Drange, L. L. Sou, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, 3(10), 688-694.
    Palmer, M. D., D. J. McNeall, N. J. Dunstone, 2011: Importance of the deep ocean for estimating decadal changes in Earth's radiation balance. Geophys. Res. Lett., 38(13), L13707, doi: 10.1029/2011GL047835.
    Potemra, J. T., S. L. Hautala, J. Sprintall, 2003: Vertical structure of Indonesian throughflow in a large-scale model. Deep-Sea Res. II, 50, 2143-2162.
    Purkey, S. G., G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 6336-6351, doi: 10.1175/2010JCLI3682.1.
    Rotstayn, L. D., and Coauthors, 2010: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. International Journal of Climatology, 30, 1067-1088, doi: 10.1002/joc.1952.
    Schott, F. A., S. P. Xie, J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi: 10.1029/2007RG000245.
    Smith, T. M., R. W. Reynolds, 2005: A global merged land-air-sea surface temperature reconstruction based on historical observations (1880-1997). J. Climate, 18, 2021-2036.
    Solomon, A., J. P. McCreary, R. Kleeman, B. A. Klinger, 2003: Interannual and decadal variability in an intermediate coupled model of the Pacific region. J. Climate, 16, 383-405.
    Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, G. K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327(5970), 1219-1223, doi: 10.1126/science.1182488.
    Swingedouw, D., T. Fichefet, H. Goosse, M. F. Loutre, 2009: Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate. Climate Dyn., 33(2-3), 365-381.
    Taylor, K. E., R. J. Stouffer, G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485-498, doi: 10.1175/BAMS-D-11-00094.1.
    Tjiputra, J. F., and Coauthers, 2013: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 6, 301-325, doi: 10.5194/gmd-6-301-2013.
    Trenberth, K. E., 2009: An imperative for climate change planning: Tracking Earth's global energy. Current Opinion in Environmental Sustainability, 1(1), 19-27.
    Trenberth, K. E., J. T. Fasullo, 2010: Tracking Earth's energy. Science, 328(5976), 316-317.
    Trenberth, K. E., J. T. Fasullo, 2011: Tracking earth's energy: From El Niňo to global warming. Surv. Geophys., 33, 413-426, doi: 10.1007/s10712-011-9150-2.
    Trenberth, K. E., J. T. Fasullo, J. Kiehl, 2009: Earth's global energy budget. Bull. Amer. Meteor. Soc., 90, 311-323.
    Tung, K. K., J. Zhou, 2013: Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl. Acad. Sci. USA, 110(6), 2058-2063.
    Vranes, K., A. L. Gordon, A. Ffield, 2002: The heat transport of the Indonesian throughflow and implications for the Indian Ocean heat budget. Deep-Sea Res. II, 49, 1391-1410.
    Voldoire, A., and Coauthors, 2011: The CNRM-CM5.1 global climate model: description and basic evaluation. Climate Dynamics, 1-31.
    Wang, T., O. H. Otterå, Y. Gao, H. Wang, 2012: The response of the North Pacific decadal variability to strong tropical volcanic eruptions. Climate Dyn., 39(12), 2917-2936, doi: 10.1007/s00382-012-1373-5.
    Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: model description and basic results of CMIP 5-20c3m experiments. Geoscientific Model Development, 4(4), 845-872.
    Wu, T. W., and Coauthors, 2013: Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res. Atmos., 118, 4326-4347, doi: 10.1002/jgrd.50320.
    Xie, S. P., H. Annamalai, F. Schott, J. P. McCreary, 2002: Origin and predictability of South Indian Ocean climate variability. J. Climate, 15, 864-874.
    Yang, H., Y. Wang, Z. Liu, 2013: A modelling study of the Bjerknes compensation in the meridional heat transport in a freshening ocean. Tellus A., 65, 18480, doi: 10.3402/tellusa.v65i0.18480.
    Yu, Y. Q., Y. Song, 2013: The modulation of ocean circulation to the global warming trend: Numerical simulation by FGOALS-s2. Chinese J. Atmos. Sci., 37(2), 395-410, doi: 10.3878/j.issn.1006-9895.2012.12306. (in Chinese)
    Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3: model description and basic performance (special issue on recent development on climate models and future climate projections). J. Meteor. Soc. Japan, 90, 23-64.
    Zanchettin, D., C. Timmreck, H. F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. KrȔger, J. H. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39(1-2), 419-444.
    Zhang, R., T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi: 10.1029/2006GL 026267.
    Zwiers, F. W., H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336-351.
  • [1] FANG Changfang*, WU Lixin, and ZHANG Xiang, 2014: The Impact of Global Warming on the Pacific Decadal Oscillation and the Possible Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 118-130.  doi: 10.1007/s00376-013-2260-7
    [2] Jun YING, Ping HUANG, Ronghui HUANG, 2016: Evaluating the Formation Mechanisms of the Equatorial Pacific SST Warming Pattern in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 433-441.  doi: 10.1007/s00376-015-5184-6
    [3] Xiao-Tong ZHENG, Lihui GAO, Gen LI, Yan DU, 2016: The Southwest Indian Ocean Thermocline Dome in CMIP5 Models: Historical Simulation and Future Projection, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 489-503.  doi: 10.1007/s00376-015-5076-9
    [4] Ran LIU, Changlin CHEN, Guihua WANG, 2016: Change of Tropical Cyclone Heat Potential in Response to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 504-510.  doi: 10.1007/s00376-015-5112-9
    [5] HUANG Wenyu, WANG Bin*, LI Lijuan, DONG Li, LIN Pengfei, YU Yongqiang, ZHOU Tianjun, LIU Li, XU Shiming, XIA Kun, PU Ye, WANG Lu, LIU Mimi, SHEN Si, HU Ning, WANG Yong, SUN Wenqi, and DONG Fang, 2014: Variability of Atlantic Meridional Overturning Circulation in FGOALS-g2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 95-109.  doi: 10.1007/s00376-013-2155-7
    [6] Renping LIN, Fei ZHENG, Xiao DONG, 2018: ENSO Frequency Asymmetry and the Pacific Decadal Oscillation in Observations and 19 CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 495-506.  doi: 10.1007/s00376-017-7133-z
    [7] Yuanxin LIU, Lijing CHENG, Yuying PAN, Zhetao TAN, John ABRAHAM, Bin ZHANG, Jiang ZHU, Junqiang SONG, 2022: How Well Do CMIP6 and CMIP5 Models Simulate the Climatological Seasonal Variations in Ocean Salinity?, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1650-1672.  doi: 10.1007/s00376-022-1381-2
    [8] LIU Yonghe, FENG Jinming, MA Zhuguo, 2014: An Analysis of Historical and Future Temperature Fluctuations over China Based on CMIP5 Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 457-467.  doi: 10.1007/s00376-013-3093-0
    [9] YANG Shili, FENG Jinming, DONG Wenjie, CHOU Jieming, 2014: Analyses of Extreme Climate Events over China Based on CMIP5 Historical and Future Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1209-1220.  doi: 10.1007/s00376-014-3119-2
    [10] Xiaolei CHEN, Yimin LIU, Guoxiong WU, 2017: Understanding the Surface Temperature Cold Bias in CMIP5 AGCMs over the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1447-1460.  doi: 10.1007s00376-017-6326-9
    [11] XU Kang, SU Jingzhi, and ZHU Congwen, 2014: The Natural Oscillation of Two Types of ENSO Events Based on Analyses of CMIP5 Model Control Runs, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 801-813.  doi: 10.1007/s00376-013-3153-5
    [12] Yuanhai FU, Riyu LU, Dong GUO, 2021: Projected Increase in Probability of East Asian Heavy Rainy Summer in the 21st Century by CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1635-1650.  doi: 10.1007/s00376-021-0347-0
    [13] LIU Chengyan* and WANG Zhaomin, , 2014: On the Response of the Global Subduction Rate to Global Warming in Coupled Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 211-218.  doi: 10.1007/s00376-013-2323-9
    [14] Huanhuan ZHU, Zhihong JIANG, Juan LI, Wei LI, Cenxiao SUN, Laurent LI, 2020: Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1119-1132.  doi: 10.1007/s00376-020-9289-1
    [15] Yawen DUAN, Peili WU, Xiaolong CHEN, Zhuguo MA, 2018: Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1077-1093.  doi: 10.1007/s00376-018-7264-x
    [16] GAN Bolan, WU Lixin, 2012: Possible Origins of the Western Pacific Warm Pool Decadal Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 169-176.  doi: 10.1007/s00376-011-0193-6
    [17] LI Chun, MA Hao, 2012: Relationship between ENSO and Winter Rainfall over Southeast China and Its Decadal Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1129-1141.  doi: 10.1007/s00376-012-1248-z
    [18] Li'an Xie, Leonard J.Pietrafesa, Kejian Wu, 2002: Interannual and Decadal Variability of Landfalling Tropical Cyclones in the Southeast Coastal States of the United States, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 677-686.  doi: 10.1007/s00376-002-0007-y
    [19] Guanghui ZHOU, Rong-Hua ZHANG, 2022: Structure and Evolution of Decadal Spiciness Variability in the North Pacific during 2004–20, Revealed from Argo Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 953-966.  doi: 10.1007/s00376-021-1358-6
    [20] Tiejun XIE, Ji WANG, Taichen FENG, Ting DING, Liang ZHAO, 2023: Linkage of the Decadal Variability of Extreme Summer Heat in North China with the IPOD since 1981, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1617-1631.  doi: 10.1007/s00376-023-2304-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 31 December 2013
Manuscript revised: 04 March 2014
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Hiatus and Accelerated Warming Decades in CMIP5 Simulations

    Corresponding author: YU Yongqiang, yyq@lasg.iap.ac.cn
  • 1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;
  • 2. College of Earth Science, University of the Chinese Academy of Sciences, Beijing 100049
Fund Project:  We would like to thank the two anonymous reviewers for their comments, which were very helpful in improving the manuscript. This study was jointly supported by the National Key Program for Developing Basic Sciences (Grant No. 2010CB950502), the "Strategic Priority Research Program Climate Change: Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences (Grant No. XDA05110302), the National Natural Science Foundation of China (Grant No. 41376019), and the Jiangsu Collaborative Innovation Center for Climate Change.

Abstract: Observed hiatus or accelerated warming phenomena are compared with numerical simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archives, and the associated physical mechanisms are explored based on the CMIP5 models. Decadal trends in total ocean heat content (OHC) are strongly constrained by net top-of-atmosphere (TOA) radiation. During hiatus decades, most CMIP5 models exhibit a significant decrease in the SST and upper OHC and a significant increase of heat penetrating into the subsurface or deep ocean, opposite to the accelerated warming decades. The shallow meridional overturning of the Pacific subtropical cell experiences a significant strengthening (slowdown) for the hiatus (accelerated warming) decades associated with the strengthened (weakened) trade winds over the tropical Pacific. Both surface heating and ocean dynamics contribute to the decadal changes in SST over the Indian Ocean, and the Indonesian Throughflow has a close relationship with the changes of subsurface temperature in the Indian Ocean. The Atlantic Meridional Overturing Circulation (Antarctic Bottom Water) tends to weaken (strengthen) during hiatus decades, opposite to the accelerated warming decades. In short, the results highlight the important roles of air-sea interactions and ocean circulations for modulation of surface and subsurface temperature.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint