Advanced Search
Article Contents

A New Method for Quality Control of Chinese Rawinsonde Wind Observations

Fund Project:

doi: 10.1007/s00376-014-4030-6

  • In 2006, the National Meteorological Information Center (NMIC) of the China Meteorological Administration (CMA) developed its real-time quality control (QC) system of rawinsonde observations coming from the Global Telecommunications System (GTS) and established the Global Upper-air Report Dataset, which, with the NMIC B01 format, is generally referred to as the B01 dataset and updated on a daily basis. However, when the B01 dataset is applied in climate analysis, some wind errors as well as some accurate values with incorrect error marks are found. To improve the quality and usefulness of Chinese rawinsonde wind observations, a new QC method (NewQC) is proposed in this paper. Different from the QC approach used for B01 datasets, the NewQC includes two vertical-wind-shear checks to analyze the vertical consistency of winds, in which the constant height level winds are used as reference data for the QC of mandatory pressure level winds. Different threshold values are adopted in the wind shear checks for different stations and different vertical levels. Several typical examples of QC of different error types by the new algorithm are shown and its performance with respect to 1980-2008 observational data is statistically evaluated. Compared with the radiosonde QC algorithms used in both the Meteorological Assimilation Data Ingest System (MADIS, http://madis.noaa.gov/madis_raob_qc.html) of the National Oceanic and Atmospheric Administration (NOAA) and the B01 dataset, the NewQC shows higher accuracy and better reliability, particularly when used to judge successive observation errors.
  • Alduchov, O. A., R. E. Eskridge, 1996: Complex quality control of upper-air variables: Geopotential height, temperature, wind and humidity at mandatory and significant levels. NCDC Report. 146 pp. [Available from NCDC, 151 Patton Ave., Asheville, NC 28801-5001; NTIS PB97-132286.]
    Anderson, E., H. Jǎrvinen, 1999: Variational quality control. Quart. J. Roy. Meteor. Soc., 125(554), 697-722.
    Baker, N. L., 1992: Quality control for the navy operational atmospheric database. Wea. Forecasting, 7(2), 250-261.
    CMA, 1976: Upper-air meteorological observation manual. China Meteorological Administration, Beijing, 51-76. (in Chinese)
    CMA, 2010: Conventional Upper-air Meteorological Observation Standard. China Meteorological Press, Beijing, 10-14. (in Chinese)
    Ciesielski, P. E., and Coauthors, 2010: Quality-controlled upper-air sounding dataset for TiMREX/SoWMEX: Development and corrections. J. Atmos. Oceanic Technol., 27(11), 1802-1821.
    DiMego, G. J., P. A. Phoebus, J. E. McDonnel, 1985: Data processing and quality control for optimum interpolation analyses at the National Meteorological Center. NMC Office Note 306, >NOAA, U.S. Dept. of Commerce, 8 pp.
    Darling, R. W. R., 1991: Estimating probabilities of hurricane wind speeds using a large-scale empirical model. J. Climate, 4(10), 1035-1046.
    Eskridge, R. E., O. A. Alduchov, I. V. Chernykh, P. Zhai, A. C. Polansky, S. R. Doty, 1995: A Comprehensive Aerological Reference Data Set (CARDS): Rough and systematic errors. Bull. Amer. Meteor. Soc., 76(10), 1759-1775.
    Gand in, L. S., 1988: Complex quality control of meteorological observations. Mon. Wea. Rev., 116(5), 1137-1156.
    Durre, I., R. S. Vose, D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19(1), 53-68.
    Ma, K. Y., Y. G. Ding, Q. P. Tu, Z. S. Me, 1993: Climate Statistical Principle and Method. China Meteorological Press, Beijing, 393-394. (in Chinese)
    Markowski, P., Y. Richardson, 2006: On the classification of vertical wind shear as directional shear versus speed shear. Wea. Forecasting, 21(2), 242-247.
    Oswald, E. M., R. B. Rood, 2013: A trend analysis of the 1930-2010 extreme heat events in the continental U.S.. J. Appl. Meteor. Climatol., 53, 565-582.
    Steinacker, R., D. Mayer, A. Steiner, 2011: Data quality control based on Self-Consistency. Mon. Wea. Rev., 139(12), 3974-3991.
    WMO, 1995: Manual on codes. WMO-No. 306, World Meteorological Organization, Geneva, Switzerland. 503pp.
    WMO, 2008: Guide to Meteorological Instruments and methods of observation. 7th ed., WMO Rep. 8, World Meteorological Organization, Geneva, Switzerland. 681pp.
    Wang, W. L., B. M. Wang, F. H. Guo, X. N. Liu, 2011: Quality control for radiosonde data. QX/T 123-2011, Chinese Meteorological Administration, Beijing, China.
    Xiao, C. Y., X, Hu, J. C., Gong, and J., Liu. 2008: Analysis of the characteristics of the stratospheric quasi-zero wind layer over China. Chinese Journal of Space Science, 28(3), 230-235. (in Chinese)
  • [1] JIANG Yuan, LIU Liping, 2014: A Test Pattern Identification Algorithm and Its Application to CINRAD/SA(B) Data, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 331-343.  doi: 10.1007/s00376-013-2315-9
    [2] Eun-Han KWON, Jinlong LI, B. J. SOHN, Elisabeth WEISZ, 2012: Use of Total Precipitable Water Classification of A Priori Error and Quality Control in Atmospheric Temperature and Water Vapor Sounding Retrieval, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 263-273.  doi: 10.1007/s00376-011-1119-z
    [3] Fang Yuan, Zijiang Zhou, LIAO Jie, 2024: A New method for deriving the high-vertical-resolution Wind Vector data from L-band radar sounding system in China, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3163-5
    [4] ZHUO Jinqing, HUANG Jianping, WANG Jiemin, ZHANG Wu, BI Jianrong, WANG Guoyin, LI Weijing, FU Peijian, 2009: Surface Turbulent Flux Measurements over the Loess Plateau for a Semi-Arid Climate Change Study, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 679-691.  doi: 10.1007/s00376-009-8188-2
    [5] Bo-Young YE, GyuWon LEE, Hong-Mok PARK, 2015: Identification and Removal of Non-meteorological Echoes in Dual-polarization Radar Data Based on a Fuzzy Logic Algorithm, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1217-1230.  doi: 10.1007/s00376-015-4092-0
    [6] Jie HE, Xulin MA, Xuyang GE, Juanjuan LIU, Wei CHENG, Man-Yau CHAN, Ziniu XIAO, 2021: Variational Quality Control of Non-Gaussian Innovations in the GRAPES m3DVAR System: Mass Field Evaluation of Assimilation Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1510-1524.  doi: 10.1007/s00376-021-0336-3
    [7] Lei Xiaoen, 1985: EFFECT OF WIND VERTICAL SHEAR ON DIFFUSION CHARACTERISTICS IN THE MESOSCALE RANGE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 225-233.  doi: 10.1007/BF03179754
    [8] ZHOU Yushu, 2013: Effects of Vertical Wind Shear, Radiation and Ice Microphysics on Precipitation Efficiency during a Torrential Rainfall Event in China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1809-1820.  doi: 10.1007/s00376-013-3007-1
    [9] YU Jinhua, TAN Zhemin, Yuqing WANG, 2010: Effects of Vertical Wind Shear on Intensity and Rainfall Asymmetries of Strong Tropical Storm Bilis (2006), ADVANCES IN ATMOSPHERIC SCIENCES, 27, 552-561.  doi: 10.1007/s00376-009-9030-6
    [10] Xin LI, Mingjian ZENG, Yuan WANG, Wenlan WANG, Haiying WU, Haixia MEI, 2016: Evaluation of Two Momentum Control Variable Schemes and Their Impact on the Variational Assimilation of Radar Wind Data: Case Study of a Squall Line, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1143-1157.  doi: 10.1007/s00376-016-5255-3
    [11] LI Xiangshu, GUO Xueliang, FU Danhong, 2013: TRMM-retrieved Cloud Structure and Evolution of MCSs over the Northern South China Sea and Impacts of CAPE and Vertical Wind Shear, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 77-88.  doi: 10.1007/s00376-012-2055-2
    [12] WU Xue*, WANG Xin, and LÜ Daren, 2014: Retrieval of Vertical Distribution of Tropospheric Refractivity through Ground-Based GPS Observation, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 37-47.  doi: 10.1007/s00376-013-2215-z
    [13] YE Xingnan, CHEN Tianyi, HU Dawei, YANG Xin, CHEN Jianmin, ZHANG Renyi, Alexei F. KHAKUZIV, WANG Lin, 2009: A Multifunctional HTDMA System with a Robust Temperature Control, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1235-1240.  doi: 10.1007/s00376-009-8134-3
    [14] Eric C. H. CHOW, Richard C. Y. LI, Wen ZHOU, 2018: Influence of Tropical Cyclones on Hong Kong Air Quality, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1177-1188.  doi: 10.1007/s00376-018-7225-4
    [15] Federico OTERO, Diego C. ARANEO, 2022: Forecasting Zonda Wind Occurrence with Vertical Sounding Data, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 161-177.  doi: 10.1007/s00376-021-1007-0
    [16] Tao SUN, Yaodeng CHEN, Deming MENG, Haiqin CHEN, 2021: Background Error Covariance Statistics of Hydrometeor Control Variables Based on Gaussian Transform, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 831-844.  doi: 10.1007/s00376-021-0271-3
    [17] Run LIU, Shaw Chen LIU, Chein-Jung SHIU, Jun LI, Yuanhang ZHANG, 2016: Trends of Regional Precipitation and Their Control Mechanisms during 1979-2013, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 164-174.  doi: 10.1007/s00376-015-5117-4
    [18] Wang Mingxing, Shangguan Xingjian, Shen Renxing, Wassmann Reiner, Seiler Wolfgang, 1993: Methane Production, Emission and Possible Control Measures in the Rice Agriculture, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 307-314.  doi: 10.1007/BF02658136
    [19] Swapan MALLICK, Devajyoti DUTTA, Ki-Hong MIN, 2017: Quality Assessment and Forecast Sensitivity of Global Remote Sensing Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 371-382.  doi: 10.1007/s00376-016-6109-8
    [20] GE Cui, ZHANG Meigen, HAN Zhiwei, LIU Yanju, 2011: Episode Simulation of Asian Dust Storms with an Air Quality Modeling System, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 511-520.  doi: 10.1007/s00376-010-0091-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 19 February 2014
Manuscript revised: 24 April 2014
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A New Method for Quality Control of Chinese Rawinsonde Wind Observations

    Corresponding author: WANG Bin, wab@lasg.iap.ac.cn
  • 1. State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;
  • 2. University of Chinese Academy of Sciences, Beijing 100049;
  • 3. National Meteorological Information Center, Beijing 100081
Fund Project:  The authors appreciate the suggestions arising from discussions with ZHU Yanfeng and RUAN Xin, and the continued support and encouragement from HU Kaixi, XIONG Anyuan, ZHU Chen, ZOU Fengling, JIANG Hui, XU Weihui, HUI Jiangxin and LIU Jingwei. This study was jointly supported by the 973 project "Assessment, Assimilation, Recompilation and Applications of Fundamental and Thematic Climate Data Records" (Grant No. 2010CB951600), the National Science and Technology Supporting Program of the 12th Five-Year Plan Period (Grant No. 2012BAC22B00), and the "Monitoring and Detection of Aerial Climate Change in China" project of the China Meteorological Administration (Grant No. GYHY200906014).

Abstract: In 2006, the National Meteorological Information Center (NMIC) of the China Meteorological Administration (CMA) developed its real-time quality control (QC) system of rawinsonde observations coming from the Global Telecommunications System (GTS) and established the Global Upper-air Report Dataset, which, with the NMIC B01 format, is generally referred to as the B01 dataset and updated on a daily basis. However, when the B01 dataset is applied in climate analysis, some wind errors as well as some accurate values with incorrect error marks are found. To improve the quality and usefulness of Chinese rawinsonde wind observations, a new QC method (NewQC) is proposed in this paper. Different from the QC approach used for B01 datasets, the NewQC includes two vertical-wind-shear checks to analyze the vertical consistency of winds, in which the constant height level winds are used as reference data for the QC of mandatory pressure level winds. Different threshold values are adopted in the wind shear checks for different stations and different vertical levels. Several typical examples of QC of different error types by the new algorithm are shown and its performance with respect to 1980-2008 observational data is statistically evaluated. Compared with the radiosonde QC algorithms used in both the Meteorological Assimilation Data Ingest System (MADIS, http://madis.noaa.gov/madis_raob_qc.html) of the National Oceanic and Atmospheric Administration (NOAA) and the B01 dataset, the NewQC shows higher accuracy and better reliability, particularly when used to judge successive observation errors.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint