Advanced Search
Article Contents

Using Hourly Measurements to Explore the Role of Secondary Inorganic Aerosol in PM2.5 during Haze and Fog in Hangzhou, China

Fund Project:

doi: 10.1007/s00376-014-4042-2

  • This paper explores the role of the secondary inorganic aerosol (SIA) species ammonium, NH4+, nitrate, NO3-, and sulfate, SO42-, during haze and fog events using hourly mass concentrations of PM2.5 measured at a suburban site in Hangzhou, China. A total of 546 samples were collected between 1 April and 8 May 2012. The samples were analyzed and classified as clear, haze or fog depending on visibility and relative humidity (RH). The contribution of SIA species to PM2.5 mass increased to ~50% during haze and fog. The mass contribution of nitrate to PM2.5 increased from 11% during clear to 20% during haze episodes. Nitrate mass exceeded sulfate mass during haze, while near equal concentrations were observed during fog episodes. The role of RH on the correlation between concentrations of SIA and visibility was examined, with optimal correlation at 60%70% RH. The total acidity during clear, haze and fog periods was 42.38, 48.38 and 45.51 nmol m-3, respectively, indicating that sulfate, nitrate and chloride were not neutralized by ammonium during any period. The nitrate to sulfate molar ratio, as a function of the ammonium to sulfate molar ratio, indicated that nitrate formation during fog started at a higher ammonium to sulfate molar ratio compared to clear and haze periods. During haze and fog, the nitrate oxidation ratio increased by a factor of 1.61.7, while the sulfur oxidation ratio increased by a factor of 1.21.5, indicating that both gaseous NO2 and SO2 were involved in the reduced visibility.
  • Chan, C. K., X. H. Yao, 2008: Air pollution in mega cities in China. Atmos. Environ., 42(1), 1-42.
    Chang, D., Y. Song, B. Liu, 2009: Visibility trends in six megacities in China 1973-2007. Atmospheric Research, 94, 161-167.
    Che, H. Z., X. Y. Zhang, Y. Li, Z. J. Zhou, J. J. Qu, X. J. Hao, 2009: Haze trends over the capital cities of 31 provinces in China, 1981-2005. Theor. Appl. Climatol., 97(3-4), 235-242.
    Du, H. H., and Coauthors, 2011: Insight into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmos. Environ., 45(29), 5131-5137.
    Fu, Q. Y., and Coauthors, 2008: Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. Environ., 42(9), 2023-2036.
    He, K. B., Q. Zhao, Y. Ma, F. Duan, F. Yang, Z. Shi, G. Chen, 2012: Spatial and seasonal variaility of PM2.5 acidity at two Chinese megacities: Insight into the formation of secondary inorganic aerosols. Atmos. Chem. Phys., 12(3), 1377-1395.
    Huang, K., and Coauthors, 2012: Typical types and formation mechanisms of haze in an eastern Asia megacity, Shanghai. Atmos. Chem. Phys., 12(1), 105-124.
    Jimenez, J. L., and Coauthors, 2009: Evolution of organic aerosol in the atmosphere. Science, 326, 1525-1529.
    Kang, C. M., H. S. Lee, B. W. Kang, S. K. Lee, Y. Sunwoo, 2004: Chemical characteristics of acidic gas pollutants and PM2.5 species during haze episodes in Seoul. South Korea. Atmos. Environ., 38(28), 4749-4760.
    Khlystov, A., G. P. Wyers, J. Slanina, 1995: The steam-jet aerosol collector. Atmos. Environ., 29, 2229-2234.
    Kim, K. W., Y. J. Kim, S. Y. Bang, 2008: Summer time haze characteristics of the urban atmosphere of Gwangju and the rural atmosphere of Anmyon, Korea. Environ. Monit. Assess., 141(1-3), 189-199.
    Lee, Y. L., R. Sequeira, 2002: Water-soluble aerosol and visibility degradation in Hong Kong during autumn and early winter, 1998. Environ. Poll., 116(2), 225-233.
    Makkonen, U., A. Virkkula, J. Mantykentta, H. Hakola, P. Keronen, V. Vakkari, P. P. Aalto, 2012: Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: Comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity. Atmos. Chem. Phys., 12(12), 5617-5631.
    Malm, W. C., D. E. Day, 2001: Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos. Environ., 35(16), 2845-2860.
    Pathak, R. K., X. H. Yao, C. K. Chan, 2004: Sampling artifacts of acidity and ionic species in PM2.5. Environ. Sci. Technol., 38(1), 254-259.
    Pathak, R. K., W. S. Wu, T. Wang, 2009: Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys., 9(5), 1711-1722.
    Sisler, J. F., W. C. Malm, 1994: The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States. Atmos. Environ., 28(5), 851-862.
    Slanina, J., and Coauthors, 2001: The continuous analysis of nitrate and ammonium in aerosols by the team jet aerosol collector (SJAC): Extension and validation of the methodology. Atmos. Environ., 35(13), 2319-2330.
    Sun, Y. L., G. S. Zhuang, A. Tang, Y. Wang, Z. S. An, 2006: Chemical characteristics of PM2.5 and PM10 in Haze-Fog episodes in Beijing. Environ. Sci. Technol., 40, 3148-3155.
    Sun, Y. L., Z. F. Wang, P. Q. Fu, Q. Jiang, T. Yang, J. Li, X. J. Ge, 2013: The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmos. Environ., 77, 927-934.
    Tan, J., J. Duan, K. B. He, Y. Ma, F. Duan, Y. Chen, J. Fu, 2009: Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou. Journal of Environmental Sciences, 21(6), 774-781.
    TenBrink, H. M., J. P. Veefkind, A.Waijersljpelaan, J. C. vanderHage, 1996: Aerosol light scattering in the Netherlands. Atmos. Environ., 30(24), 4251-4261.
    Trebs, I., F. X. Meixner, J. Slanina, R. Otjes, P. Jongejan, M. O. Andreae, 2004: Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic species at a ruralsite in the Amazon Basin. Atmos. Chem. Phys., 4, 967-987.
    Wang, J. L., X. L. Liu, 2006: The discussion on relationship between visibility and mass concentration of PM2.5 in Beijing. Acta Meteorologica Sinica, 64, 221-228. (in Chinese)
    Wang, Y., G. S. Zhuang, A. Tang, H. Yuan, Y. Sun, S. Chen, A. Zheng, 2005: The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmos. Environ., 39(21), 3771-3784.
    Wang, Y., G. S. Zhuang, Y. Sun, Z. S. An, 2006: The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ., 40(34), 6579-6591.
    Warneck, P., 2000: Chemistry of the Natural Atmosphere. Volume 71, 2nd ed., Acedemic Press, Inc., New York, 927 pp.
    Wu, D., X. X. Tie, C. C. Li, Z. M. Ying, A. K. Lau, J. Huang, 2005: An extremely low visibility event over the Guangzhou region: A case study. Atmos. Environ., 39(35), 6568-6577.
    Wyers, G. P., R. P. Otjes, J. Slanina, 1993: A continuous-flow denuder for the measurement of ambient concentrations and surface-exchange fluxes of ammonia. Atmos. Environ., 27A(3), 2085-2090.
    Xiao, Z. M., Y. F. Zhang, S. M. Hong, X. H. Bi, L. Jiao, Y. C. Feng, Y. Q. Wang, 2011: Estimation of the main factors influencing haze, based on a long-term monitoring campaign in Hangzhou, China. Aerosol Air Qual. Res., 11(7), 873-882.
    Yao, X. H., T. Y. Ling, M. Fang, C. Chan, 2006: Comparison of thermodynamic predictions for in situ pH in PM2.5. Atmos. Environ., 40(16), 2835-2844.
    Ye, X. N., and Coauthors, 2011: Important role of ammonia on haze formation in Shanghai. Environ. Res. Lett., 6(2), doi: 10.1088/1748-9326/6/2/024019.
    Zhang, Q., J. L. Jimenez, D. R. Worsnop, M. Canagaratna, 2007: A case study of urban particle acidity and its influence on secondary organic aerosol. Environ. Sci. Technol., 41(9), 3213-3219.
  • [1] Xinyu ZHANG, Zhicong YIN, Huijun WANG, Mingkeng DUAN, 2021: Monthly Variations of Atmospheric Circulations Associated with Haze Pollution in the Yangtze River Delta and North China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 569-580.  doi: 10.1007/s00376-020-0227-z
    [2] YU Xingna, ZHU Bin, YIN Yan, FAN Shuxian, CHEN Aijun, 2011: Seasonal Variation of Columnar Aerosol Optical Properties in Yangtze River Delta in China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1326-1335.  doi: 10.1007/s00376-011-0158-9
    [3] Jingjiao PU, Honghui XU, Bo YAO, Yan YU, Yujun JIANG, Qianli MA, Liqu CHEN, 2020: Estimate of Hydrofluorocarbon Emissions for 2012–16 in the Yangtze River Delta, China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 576-585.  doi: 10.1007/s00376-020-9242-3
    [4] Liang ZHANG, Bin ZHU, Jinhui GAO, Hanqing KANG, 2017: Impact of Taihu Lake on City Ozone in the Yangtze River Delta, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 226-234.  doi: 10.1007/s00376-016-6099-6
    [5] Wei DU, Xinpei WANG, Fengqin YANG, Kaixu BAI, Can WU, Shijie LIU, Fanglin WANG, Shaojun LV, Yubao CHEN, Jinze WANG, Wenliang LIU, Lujun WANG, Xiaoyong CHEN, Gehui WANG, 2021: Particulate Amines in the Background Atmosphere of the Yangtze River Delta, China: Concentration, Size Distribution, and Sources, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1128-1140.  doi: 10.1007/s00376-021-0274-0
    [6] Wenjing HUANG, Timothy J. GRIFFIS, Cheng HU, Wei XIAO, Xuhui LEE, 2021: Seasonal Variations of CH4 Emissions in the Yangtze River Delta Region of China Are Driven by Agricultural Activities, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1537-1551.  doi: 10.1007/s00376-021-0383-9
    [7] Yawei QU, Tijian WANG, Yanfeng CAI, Shekou WANG, Pulong CHEN, Shu LI, Mengmeng LI, Cheng YUAN, Jing WANG, Shaocai XU, 2018: Influence of Atmospheric Particulate Matter on Ozone in Nanjing, China: Observational Study and Mechanistic Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1381-1395.  doi: 10.1007/s00376-018-8027-4
    [8] MA Jianzhong, XU Xiaobin, ZHAO Chunsheng, YAN Peng, 2012: A Review of Atmospheric Chemistry Research in China: Photochemical Smog, Haze Pollution, and Gas-Aerosol Interactions, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1006-1026.  doi: 10.1007/s00376-012-1188-7
    [9] AN Junling, LI Ying, CHEN Yong, LI Jian, QU Yu, TANG Yujia, 2013: Enhancements of Major Aerosol Components Due to Additional HONO Sources in the North China Plain and Implications for Visibility and Haze, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 57-66.  doi: 10.1007/s00376-012-2016-9
    [10] Jingjiao PU, Honghui XU, Bo YAO, Yan YU, Yujun JIANG, Qianli MA, Liqu CHEN, 2020: Erratum to: Estimate of Hydrofluorocarbon Emissions for 2012–16 in the Yangtze River Delta, China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 925-925.  doi: 10.1007/s00376-020-2007-1
    [11] WANG Xuemei, CHEN Fei, WU Zhiyong, ZHANG Meigen, Mukul TEWARI, Alex GUENTHER, Christine WIEDINMYER, 2009: Impacts of Weather Conditions Modified by Urban Expansion on Surface Ozone: Comparison between the Pearl River Delta and Yangtze River Delta Regions, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 962-972.  doi: 10.1007/s00376-009-8001-2
    [12] Boru MAI, Xuejiao DENG, Zhanqing LI, Jianjun LIU, Xiang'ao XIA, Huizheng CHE, Xia LIU, Fei LI, Yu ZOU, Maureen CRIBB, 2018: Aerosol Optical Properties and Radiative Impacts in the Pearl River Delta Region of China during the Dry Season, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 195-208.  doi: 10.1007/s00376-017-7092-4
    [13] LIU Xingang, ZHANG Yuanhang, WEN Mengting, WANG Jingli, Jinsang JUNG, CHANG Shih-yu, HU Min, ZENG Limin, Young Joon KIM, 2010: A Closure Study of Aerosol Hygroscopic Growth Factor during the 2006 Pearl River Delta Campaign, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 947-956.  doi: 10.1007/s00376-009-9150-z
    [14] Junlin AN, Huan LV, Min XUE, Zefeng ZHANG, Bo HU, Junxiu WANG, Bin ZHU, 2021: Analysis of the Effect of Optical Properties of Black Carbon on Ozone in an Urban Environment at the Yangtze River Delta, China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1153-1164.  doi: 10.1007/s00376-021-0367-9
    [15] DING Jincai, YANG Yinming, YE Qixin, HUANG Yan, MA Xiaoxing, MA Leiming, Y. R. GUO, 2007: Moisture Analysis of a Squall Line Case Based on Precipitable Water Vapor Data from a Ground-Based GPS Network in the Yangtze River Delta, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 409-420.  doi: 10.1007/s00376-007-0409-y
    [16] Huiyan XU, Xiaofan LI, Jinfang YIN, Dengrong ZHANG, 2023: Predecessor Rain Events in the Yangtze River Delta Region Associated with South China Sea and Northwest Pacific Ocean (SCS-WNPO) Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1021-1042.  doi: 10.1007/s00376-022-2069-3
    [17] Li XU, Lin DU, Narcisse T. TSONA, Maofa GE, 2021: Anthropogenic Effects on Biogenic Secondary Organic Aerosol Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1053-1084.  doi: 10.1007/s00376-020-0284-3
    [18] SHEN Shuanghe, YANG Dong, XIAO Wei, LIU Shoudong, Xuhui LEE, 2014: Constraining Anthropogenic CH4 Emissions in Nanjing and the Yangtze River Delta, China, Using Atmospheric CO2 and CH4 Mixing Ratios, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1343-1352.  doi: 10.1007/s00376-014-3231-3
    [19] Ping WU, Yihui DING, Yanju LIU, 2017: Atmospheric Circulation and Dynamic Mechanism for Persistent Haze Events in the Beijing-Tianjin-Hebei Region, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 429-440.  doi: 10.1007/s00376-016-6158-z
    [20] Tang Youhua, Miao Manqian, 1998: Numerical Studies on Urban Heat Island Associated with Urbanization in Yangtze Delta Region, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 393-403.  doi: 10.1007/s00376-998-0009-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 13 March 2014
Manuscript revised: 12 April 2014
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Using Hourly Measurements to Explore the Role of Secondary Inorganic Aerosol in PM2.5 during Haze and Fog in Hangzhou, China

    Corresponding author: CHEN Jianmin, jmchen@fudan.edu.cn
  • 1. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433;
  • 2. Hangzhou Municipal Environmental Monitoring Center, Hangzhou 310007;
  • 3. Key Laboratory of Data Analysis and Application, the First Institute of Oceanography, State Oceanic Administration, Qingdao 266061
Fund Project:  This work was supported by the National Natural Science Foundation of China (Grant Nos. 21190053 and 21177025), the Shanghai Science and Technology Commission of Shanghai Municipality (Grant Nos. 12DJ1400100 and 13XD 1400700) and the Priority Fields for Ph.D. Programs Foundation of the Ministry of Education of China (Grant No. 20110071130003).

Abstract: This paper explores the role of the secondary inorganic aerosol (SIA) species ammonium, NH4+, nitrate, NO3-, and sulfate, SO42-, during haze and fog events using hourly mass concentrations of PM2.5 measured at a suburban site in Hangzhou, China. A total of 546 samples were collected between 1 April and 8 May 2012. The samples were analyzed and classified as clear, haze or fog depending on visibility and relative humidity (RH). The contribution of SIA species to PM2.5 mass increased to ~50% during haze and fog. The mass contribution of nitrate to PM2.5 increased from 11% during clear to 20% during haze episodes. Nitrate mass exceeded sulfate mass during haze, while near equal concentrations were observed during fog episodes. The role of RH on the correlation between concentrations of SIA and visibility was examined, with optimal correlation at 60%70% RH. The total acidity during clear, haze and fog periods was 42.38, 48.38 and 45.51 nmol m-3, respectively, indicating that sulfate, nitrate and chloride were not neutralized by ammonium during any period. The nitrate to sulfate molar ratio, as a function of the ammonium to sulfate molar ratio, indicated that nitrate formation during fog started at a higher ammonium to sulfate molar ratio compared to clear and haze periods. During haze and fog, the nitrate oxidation ratio increased by a factor of 1.61.7, while the sulfur oxidation ratio increased by a factor of 1.21.5, indicating that both gaseous NO2 and SO2 were involved in the reduced visibility.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint