Advanced Search
Article Contents

Impacts of the Diurnal Cycle of Radiation on Tropical Cyclone Intensification and Structure

Fund Project:

doi: 10.1007/s00376-014-4060-0

  • To investigate the impacts of the diurnal cycle on tropical cyclones (TCs), a set of idealized simulations were conducted by specifying different radiation (i.e., nighttime-only, daytime-only, full diurnal cycle). It was found that, for an initially weak storm, it developed faster during nighttime than daytime. The impacts of radiation were not only on TC intensification, but also on TC structure and size. The nighttime storm tended to have a larger size than its daytime counterparts. During nighttime, the radiative cooling steepened the lapse rate and thus reduced the static stability in cloudy regions, enhancing convection. Diabatic heating associated with outer convection induced boundary layer inflows, which led to outward expansion of tangential winds and thus increased the storm size.
  • Bui, H. B., R. K. Smith, M. T. Montgomery, J. Peng, 2009: Balanced and unbalanced aspects of tropical-cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 1715-1731.
    Dai, A. G., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 1112-1128.
    Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107.
    Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 3431-3456.
    Fudeyasu, H., Y. Q. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer-Core Spinup process. J. Atmos. Sci., 68, 430-449.
    Ge, X. Y, T. Li, M. Peng, 2013: Tropical cyclone genesis efficiency: Mid-level versus bottom vortex. Journal of Tropical Meteorology, 19, 197-213.
    Gray, W. M., R. W. Jacobson, Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 1171-1188.
    Hazelton, A. T., R. E. Hart, 2013: Hurricane eyewall slope as determined from airborne radar reflectivity data: Composites and case studies. Wea. Forecasting, 28, 368-386.
    Hendricks, E. A., M. T. Montgomery, C. A. Davis, 2004: On the role of "vortical" hot towers in formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 1209-1232.
    Hobgood, J. S., 1986: A possible mechanism for the diurnal oscillations of tropical cyclones. J. Atmos. Sci., 43, 2901-2922.
    Kossin, J. P., 2002: Daily hurricane variability inferred from GOES infrared imagery. Mon. Wea. Rev., 130, 2260-2270.
    Liang, J., L. G. Wu, H. J. Zhong, 2014: Idealized numerical simulations of tropical cyclone formation associated with monsoon gyres. Adv. Atmos. Sci., 31, 305-315.
    Li, T., X. Ge, M. Peng, W. Wang, 2012: Dependence of tropical cyclone intensification on the Coriolis parameter. Tropical Cyclone Research and Review, 1(2), 242-253.
    Lin, Y. L., R. D. Rarley, H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 1065-1092.
    Melhauser, C., F. Q. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 1241-1259.
    Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 1408-1418.
    Nesbitt, S. W., E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 1456-1475.
    Shu, H. L., Q. H. Zhang, X. Bin, 2013: Diurnal variation of tropical cyclone rainfall in the western North Pacific in 2008-2010. Atmospheric and Oceanic Science Letters, 6, 97-102.
    Smith, R. K, M. T. Montgomery, 2008: Balanced boundary layers used in hurricane models. Quart. J. Roy. Meteor. Soc., 134, 1385-1395.
    Stern, D. P., D. S. Nolan, 2009: Reexamining the vertical structure of tangential winds in tropical cyclones: Observations and theory. J. Atmos. Sci., 66, 3579-3600.
    Tao, W. K., S. Lang, J. Simpson, C. H. Sui, B. Ferrier, M. D., Chou, 1996: Mechanisms of cloud-radiation interaction in the Tropics and midlatitudes. J. Atmos. Sci., 53, 2624-2651.
    Webster, P. J., G. L. Stephens, 1980: Tropical upper-tropospheric extended clouds: Inferences from winter MONEX. J. Atmos. Sci., 37, 1521-154.
    Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteorol. Mag., 36, 183-191.
    Wu, L. G., J. Liang, C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 2208-2221.
    Xu, J., Y. Q. Wang, 2010: Sensitivity of tropical cyclone inner core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67(6), 1831-1852.
    Yu, J. H., Z. M. Tan, Y. Q. Wang, 2010: Effects of vertical wind shear on intensity and rainfall asymmetries of strong tropical storm Bilis (2006). Adv. Atmos. Sci., 27, 552-561.
    Yuter, S. E., R. A. Houze, Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Partl: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123, 1921-1940
  • [1] Shunwu ZHOU, Yue MA, Xuyang GE, 2016: Impacts of the Diurnal Cycle of Solar Radiation on Spiral Rainbands, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1085-1095.  doi: 10.1007/s00376-016-5229-5
    [2] GE Xuyang, XU Wei, ZHOU Shunwu, 2015: Sensitivity of Tropical Cyclone Intensification to Inner-Core Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1407-1418.  doi: 10.1007/s00376-015-4286-5
    [3] GE Xuyang, MA Yue, ZHOU Shunwu, Tim LI, 2015: Sensitivity of the Warm Core of Tropical Cyclones to Solar Radiation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1038-1048.  doi: 10.1007/s00376-014-4206-0
    [4] Rong FEI, Yuqing Wang, 2024: On the optimal initial inner-core size for tropical cyclone intensification: An idealized numerical study, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3296-6
    [5] MA Zhanhong, FEI Jianfang, HUANG Xiaogang, CHENG Xiaoping, 2014: Impacts of the Lowest Model Level Height on Tropical Cyclone Intensity and Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 421-434.  doi: 10.1007/s00376-013-3044-9
    [6] Zhehan CHEN, Qingqing LI, 2021: Re-examining Tropical Cyclone Fullness Using Aircraft Reconnaissance Data, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1596-1607.  doi: 10.1007/s00376-021-0282-0
    [7] HUANG Hong, JIANG Yongqiang, CHEN Zhongyi, LUO Jian, WANG Xuezhong, 2014: Effect of Tropical Cyclone Intensity and Instability on the Evolution of Spiral Bands, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1090-1100.  doi: 10.1007/s00376-014-3108-5
    [8] QIN Xiaohao, MU Mu, 2014: Can Adaptive Observations Improve Tropical Cyclone Intensity Forecasts?, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 252-262.  doi: 10.1007/s00376-013-3008-0
    [9] Chang-Hoi HO, Joo-Hong KIM, Hyeong-Seog KIM, Woosuk CHOI, Min-Hee LEE, Hee-Dong YOO, Tae-Ryong KIM, Sangwook PARK, 2013: Technical Note on a Track-pattern-based Model for Predicting Seasonal Tropical Cyclone Activity over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1260-1274.  doi: 10.1007/s00376-013-2237-6
    [10] Tong XIE, Liguang WU, Yecheng FENG, Jinghua YU, 2024: Alignment of Track Oscillations during Tropical Cyclone Rapid Intensification, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 655-670.  doi: 10.1007/s00376-023-3073-y
    [11] ZENG Zhihua, Yuqing WANG, DUAN Yihong, CHEN Lianshou, GAO Zhiqiu, 2010: On Sea Surface Roughness Parameterization and Its Effect on Tropical Cyclone Structure and Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 337-355.  doi: 10.1007/s00376-009-8209-1
    [12] TANG Xiaodong, TAN Zhemin, 2006: Boundary-Layer Wind Structure in a Landfalling Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 737-749.  doi: 10.1007/s00376-006-0737-3
    [13] Tian Yongxiang, Luo Zhexian, 1994: Vertical Structure of Beta Gyres and Its Effect on Tropical Cyclone Motion, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 43-50.  doi: 10.1007/BF02656992
    [14] GAO Feng*, Peter P. CHILDS, Xiang-Yu HUANG, Neil A. JACOBS, and Jinzhong MIN, 2014: A Relocation-based Initialization Scheme to Improve Track-forecasting of Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 27-36.  doi: 10.1007/s00376-013-2254-5
    [15] Zhe-Min TAN, Lili LEI, Yuqing WANG, Yinglong XU, Yi ZHANG, 2022: Typhoon Track, Intensity, and Structure: From Theory to Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1789-1799.  doi: 10.1007/s00376-022-2212-1
    [16] Yiwu HUANG, Yihong DUAN, Johnny C. L. CHAN, Xuwei BAO, 2019: A Method for Diagnosing the Secondary Circulation with Saturated Moist Entropy Structure in a Mature Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, , 804-810.  doi: 10.1007/s00376-019-9054-5
    [17] Yue JIANG, Liguang WU, Haikun ZHAO, Xingyang ZHOU, Qingyuan LIU, 2020: Azimuthal Variations of the Convective-scale Structure in a Simulated Tropical Cyclone Principal Rainband, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1239-1255.  doi: 10.1007/s00376-020-9248-x
    [18] Kexin CHEN, Guanghua CHEN, Donglei SHI, 2023: Modulation of the Wind Field Structure of Initial Vortex on the Relationship between Tropical Cyclone Size and Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1707-1721.  doi: 10.1007/s00376-023-2233-4
    [19] CHENG Xiaoping, FEI Jianfang, HUANG Xiaogang, ZHENG Jing, 2012: Effects of Sea Spray Evaporation and Dissipative Heating on Intensity and Structure of Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 810-822.  doi: 10.1007/s00376-012-1082-3
    [20] Chen Lianshou, Luo Zhexian, 1995: Effect of the Interaction of Different Scale Vortices on the Structure and Motion of Typhoons, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 207-214.  doi: 10.1007/BF02656833

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 31 March 2014
Manuscript revised: 22 May 2014
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Impacts of the Diurnal Cycle of Radiation on Tropical Cyclone Intensification and Structure

    Corresponding author: GE Xuyang, xuyang@nuist.edu.cn
  • 1. Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing 210044;
  • 2. Key laboratory of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044;
  • 3. College of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044;
  • 4. International Pacific Research Center, University of Hawaii, Honolulu, HI 96822, USA
Fund Project:  The authors are grateful to the anonymous reviewers for their constructive comments. This work was jointly sponsored by the National Natural Science Foundation of China (Grant Nos. 41275095, 41075037), the National Key Basic Research Program of China (Grant No. 2012CB955204), and the Key University Science Research Project of Jiangsu Province (Grant No. 14KJA170005). The Earth System Modeling Center contribution number is ESMC-008.

Abstract: To investigate the impacts of the diurnal cycle on tropical cyclones (TCs), a set of idealized simulations were conducted by specifying different radiation (i.e., nighttime-only, daytime-only, full diurnal cycle). It was found that, for an initially weak storm, it developed faster during nighttime than daytime. The impacts of radiation were not only on TC intensification, but also on TC structure and size. The nighttime storm tended to have a larger size than its daytime counterparts. During nighttime, the radiative cooling steepened the lapse rate and thus reduced the static stability in cloudy regions, enhancing convection. Diabatic heating associated with outer convection induced boundary layer inflows, which led to outward expansion of tangential winds and thus increased the storm size.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint