Advanced Search
Article Contents

Errors in Current Velocity in the Low-latitude North Pacific: Results from the Regional Ocean Modeling System


doi: 10.1007/s00376-018-8140-4

  • Using the Regional Ocean Modeling System, this study investigates the simulation uncertainties in the current velocity in the low-latitude North Pacific where the Kuroshio originates [i.e., the beginning of the Kuroshio (BK)]. The results show that the simulation uncertainties largely reflect the contributions of wind stress forcing errors, especially zonal wind stress errors, rather than initial or boundary errors. Using the idea of a nonlinear forcing singular vector, two types of zonal wind stress errors (but sharing one EOF mode) are identified from error samples derived from reanalysis data as having the potential to yield large simulation uncertainties. The type-1 error possesses a pattern with positive anomalies covering the two zonal bands of 0°-15°N and 25°-40°N in the Pacific Ocean, with negative anomalies appearing between these two bands; while the type-2 error is almost opposite to the type-1 error. The simulation uncertainties induced by the type-1 and -2 errors consist of both large-scale circulation errors controlled by a mechanism similar to the Sverdrup relation and mesoscale eddy-like errors generated by baroclinic instability. The type-1 and -2 errors suggest two areas: one is located between the western boundary and the meridional 130°E along 15°-20°N, and the other is located between 140°-150°E and along 15°-20°N. The reduction of errors over these two areas can greatly improve the simulation accuracy of the current velocity at BK. These two areas represent sensitive areas for targeted observations associated with the simulation of the current velocity at BK.
    摘要: 该研究使用著名的区域海洋模式ROMS(Regional Ocean Modeling System), 对源区黑潮流速的模拟不确定性进行了解剖式研究. 结果表明, 在驱动模式运行的初始条件, 边界条件, 以及风应力外强迫中, 风应力强迫误差, 特别是纬向风应力误差常常导致源区黑潮流速具有更大的模拟误差. 为了揭示对源区黑潮模拟不确定性具有最大影响的纬向风应力误差, 本研究基于历史分析资料, 利用集合的办法, 识别了对源区黑潮具有最大影响的非线性强迫奇异向量(nonlinear forcing singular vector; NFSV)型-纬向风应力误差. 该误差可分为两种类型, 即type-1和type-2误差. type-1误差位于0°–15°N, 25°–40°N两个纬度带内, 且表现为横跨太平洋海盆的正风应力误差, 而在这两个纬度带之间的区域, type-1误差则表现为横跨太平洋海盆的负风应力误差; type-2误差与type-1型结构相同, 但符号几乎相反. type-1和type-2误差对源区黑潮流速模拟的影响, 一方面通过改变大尺度海洋环流影响源区黑潮的模拟; 另一方面则诱发海洋中尺度涡, 并促使其西移而影响源区黑潮. 根据type-1和type-2误差, 并通过敏感性实验, 确定了能够有效改善源区黑潮模拟效果的目标观测敏感区, 即位于15°–20°N之间, 呈东西分布, 且包含两个区域: 一个区域位于西边界与130°E之间; 另一个则位于135°–150°E之间.
  • 加载中
  • 1 Balmaseda M. A.,A. Vidard, and D. L. T. Anderson, 2008: The ECMWF ocean analysis system: ORA-S3. Mon. Wea. Rev., 136, 3018-3034,
    2 Behringer D. W.,Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, 11- 15.
    3 Carton J. A.,B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 136, 2999,
    4 Centurioni L. R.,P. P. Niiler, and D.-K. Lee, 2004: Observations of inflow of philippine sea surface water into the South China Sea through the Luzon Strait. J. Phys. Oceanogr., 34, 113,
    5 Chelton D. B.,M. G. Schlax, 1996: Global observations of oceanic rossby waves. Science, 272, 234-238,
    6 Dee, D. P.,Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597,
    7 Du, C., Coauthors, 2013: Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: Insights from an isopycnal mixing model. Biogeosciences, 10, 6419-6432,
    8 Duan W. S.,C. Wei, 2013: The `spring predictability barrier' for ENSO predictions and its possible mechanism: Results from a fully coupled model. International Journal of Climatology, 33, 1280-1292,
    9 Duan W. S.,P. Zhao, 2015: Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Ni?o predictions by nonlinear forcing singular vector approach. Climate Dyn., 44, 2351-2367,
    10 Duan W. S.,F. F. Zhou, 2013: Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A, 65, 18452,
    11 Duan W. S.,J. Y. Hu, 2016: The initial errors that induce a significant "spring predictability barrier" for El Ni?o events and their implications for target observation: Results from an earth system model. Climate Dyn., 46, 3599-3615,
    12 Duan W. S.,X. C. Liu, K. Y. Zhu, and M. Mu, 2009: Exploring the initial errors that cause a significant "spring predictability barrier" for El Ni?o events. J. Geophys. Res., 114, C04022,
    13 Fang G. H.,W. Fang, Y. Fang, and K. Wang, 1998: A survey of studies on the South China Sea upper ocean circulation. Acta Oceanogr. Taiwanica, 37, 1- 16.
    14 Fujii Y.,H. Tsujino, N. Usui, H. Nakano, and M. Kamachi, 2008: Application of singular vector analysis to the Kuroshio large meander. J. Geophys. Res., 113, C07026,
    15 Gordon A. L.,P. Flament, C. Villanoy, and L. Centurioni, 2014: The nascent Kuroshio of Lamon Bay. J. Geophys. Res., 119, 4251-4263,
    16 Gu D.-F.,S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805-807,
    17 Haidvogel D. B.,H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239-281,
    18 Haidvogel, D. B.,Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys., 227, 3595-3624,
    19 Hautala S. L.,D. H. Roemmich, and W. J. Schmilz, Jr., 1994: Is the North Pacific in Sverdrup balance along 24°N? J. Geophys. Res., 99, 16 041-16 052,
    20 Hu D. X.,M. C. Cui, 1991: The Western Boundary Current of the pacific and its role in the climate. Chinese Journal of Oceanology and Limnology, 9, 1-14,
    21 Hu, D. X.,Coauthors, 2013: Direct measurements of the luzon undercurrent. J. Phys. Oceanogr., 43, 1417-1425,
    22 Hu, D. X.,Coauthors, 2015: Pacific western boundary currents and their roles in climate. Nature, 522, 299-308,
    23 Jan, S., Coauthors, 2015: Large variability of the Kuroshio at 23.75°N east of Taiwan. J. Geophys. Res., 120, 1825-1840,
    24 Jiang H.,H. Wang, J. Zhu, and B. K. Tan, 2006: Relationship between real meridional volume transport and Sverdrup transport in the North Subtropical Pacific. Chinese Science Bulletin, 51, 1757-1760,
    25 Kanamitsu M.,W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1644,
    26 Kaneko A., M., and Coauthors, 1998: ADCP observation of the western equatorial pacific by a commercial ship. Umi, 7(6), 357-368,
    27 Kashino Y.,N. Espa\ na, F. Syamsudin, K. J. Richards, T. Jensen, P. Dutrieux, and A. Ishida, 2009: Observations of the north equatorial current, mindanao current, and kuroshio current system during the 2006/07 El Ni?o and 2007/08 La Ni?a. Journal of Oceanography, 65, 325-333,
    28 Kim Y. Y.,T. D. Qu, T. Jensen, T. Miyama, H. Mitsudera, H. W. Kang, and A. Ishida, 2004: Seasonal and interannual variations of the north equatorial current bifurcation in a high-resolution OGCM. J. Geophys. Res., 109, C03040,
    29 Large W. G.,S. G. Yeager, 2009: The global climatology of an interannually varying air - sea flux data set. Climate Dyn., 33, 341-364,
    30 Latif M.,T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634-637,
    31 Li J. J.,X. Jiang, G. Li, Z. Y. Jing, L. B. Zhou, Z. X. Ke, and Y. H. Tan, 2017: Distribution of picoplankton in the northeastern South China Sea with special reference to the effects of the Kuroshio intrusion and the associated mesoscale eddies. Science of the Total Environment, 589, 1-10,
    32 Lien R.-C.,B. Ma, Y. H. Cheng, C. R. Ho, B. Qiu, C. M. Lee, and M. H. Chang, 2014: Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance. J. Geophys. Res., 119, 2129-2142,
    33 Lien, R.-C., Coauthors, 2015: The Kuroshio and Luzon undercurrent east of Luzon Island. Oceanography, 28, 54-63,
    34 Lu J.,Q. Liu, 2013: Gap-leaping kuroshio and blocking westward-propagating rossby wave and eddy in the luzon strait. J. Geophys. Res., 118(3), 1170-1181,
    35 Macdonald A. M.,C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature, 382, 436-439,
    36 Majumdar S. J.,2016: A review of targeted observations. Bull. Amer. Meteor. Soc., 97, 2287-2303,
    37 McCreary, J. P. Jr.,P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466,
    38 Mu M.,2013: Methods, current status, and prospect of targeted observation. Science China Earth Sciences., 56, 1997-2005,
    39 Nakano T.,I. Kaneko, M. Endoh, and M. Kamachi, 2005: Interannual and decadal variabilities of npiw salinity minimum core observed along jma's hydrographic repeat sections. Journal of Oceanography, 61(4), 681-697,
    40 Nan F.,H. J. Xue, F. Chai, L. Shi, M. C. Shi, and P. F. Guo, 2011: Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dynamics, 61, 1291-1304,
    41 Nan F.,F. Yu, H. J. Xue, L. L. Zeng, D. X. Wang, S. L. Yang, and K. C. Nguyen, 2016: Freshening of the upper ocean in the South China Sea since the early 1990s. Deep Sea Research Part I: Oceanographic Research Papers, 118, 20-29,
    42 Nitani H.,1972: Beginning of the Kuroshio. Kuroshio: Physical Aspects of the Japan Current, H. Stommel and K. Yashida., Eds., University of Washington Press, 129- 163.
    43 Prakash K. R.,V. Pant, 2017: Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere-ocean model. Ocean Dynamics, 67, 51-64,
    44 Qiu B.,1999: Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 2471,
    45 Qiu B.,R. Lukas, 1996: Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12 315-12 330,
    46 Qiu B.,S. M. Chen, 2010: Interannual variability of the North Pacific subtropical countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr., 40, 213-225,
    47 Qiu B.,T. Nakano, S. M. Chen, and P. Klein, 2017: Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nature Communications, 8, 14055,
    48 Qu T. D.,H. Mitsudera, and T. Yamagata, 1998: On the western boundary currents in the Philippine Sea. J. Geophys. Res., 103, 7537-7548,
    49 Qu T. D.,Y. Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida, and T. Yamagata, 2004: Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea?. J. Climate, 17, 3644-3657,
    50 Rudnick, D. L.,Coauthors, 2011: Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography, 24, 52-63,
    51 Shchepetkin A. F.,J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108, 3090,
    52 Shchepetkin A. F.,J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9, 347-404,
    53 Sheremet V. A.,J. Kuehl, 2007: Gap-leaping western boundary current in a circular tank model. J. Phys. Oceanogr., 37, 1488-1495,
    54 Song Y. H.,D. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115, 228-244,
    55 Stommel H.,1948: The westward intensification of wind-driven ocean currents. Eos, Trans. Amer. Geophys. Union, 29, 202-206,
    56 Tao L. J.,R.-H. Zhang, and C. Gao, 2017: Initial error-induced optimal perturbations in ENSO predictions, as derived from an intermediate coupled model. Adv. Atmos. Sci., 34(6), 791-803,
    57 Trenberth K. E.,J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 3433-3443,
    58 Wang F.,N. Zang, Y. L. Li, and D. X. Hu, 2015: On the subsurface countercurrents in the Philippine Sea. J. Geophys. Res., 120, 131-144,
    59 Wang Q.,M. Mu, 2015: A new application of conditional nonlinear optimal perturbation approach to boundary condition uncertainty. J. Geophys. Res., 120(12), 7979-7996,
    60 Wang Q.,M. Mu, and H. A. Dijkstra, 2013: The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation. J. Geophys. Res., 118, 869-884, .
    61 Wang Q. Y.,D. X. Hu, 2012: Origin of the Luzon undercurrent. Bulletin of Marine Science, 88, 51-60,
    62 Wunsch C.,2005: The total meridional heat flux and its oceanic and atmospheric partition. J. Climate, 18, 4374-4380,
    63 Xiao F.,L. L. Zeng, Q. Y. Liu, W. Zhou, and D. X. Wang, 2018: Extreme subsurface warm events in the South China Sea during 1998/99 and 2006/07: Observations and mechanisms. Climate Dyn., 50, 115-128,
    64 Yu Y., Mu M., W. Duan, and T. Gong, 2012: Contribution of the location and spatial pattern of initial error to uncertainties in El Ni?o predictions. J. Geophys. Res., 117,
    65 Zhai F. G.,D. X. Hu, Q. Y. Wang, and F. J. Wang, 2014: Long-term trend of Pacific South Equatorial Current bifurcation over 1950-2010. Geophys. Res. Lett., 41, 3172-3180,
    66 Zhang K.,Q. Wang, M. Mu, and P. Liang, 2016: Effects of optimal initial errors on predicting the seasonal reduction of the upstream Kuroshio transport. Deep Sea Research Part I: Oceanographic Research Papers, 116, 220-235,
    67 Zhang K.,M. Mu, and Q. Wang, 2017: Identifying the sensitive area in adaptive observation for predicting the upstream Kuroshio transport variation in a 3-D ocean model. Science China Earth Sciences, 60, 866-875,
    68 Zhao Y. P.,G. A. McBean, 1986: Annual and interannual variability of the North Pacific ocean-to-atmosphere total heat transfer. Atmos.-Ocean, 24, 265-282,
    69 Zou G. A.,Q. Wang, and M. Mu, 2016: Identifying sensitive areas of adaptive observations for prediction of the Kuroshio large meander using a shallow-water model. Chinese Journal of Oceanology and Limnology, 34, 1122-1133,
  • [1] Qian ZHOU, Wansuo DUAN, Xu WANG, Xiang LI, Ziqing ZU, 2021: The Initial Errors in the Tropical Indian Ocean that Can Induce a Significant “Spring Predictability Barrier” for La Niña Events and Their Implication for Targeted Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1566-1579.  doi: 10.1007/s00376-021-0427-1
    [2] LIU Qinyu, WEN Na, YU Yongqiang, 2006: The Role of the Kuroshio in the Winter North Pacific Ocean-Atmosphere Interaction: Comparison of a Coupled Model and Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 181-189.  doi: 10.1007/s00376-006-0181-4
    [3] Zhizhen XU, Jing CHEN, Mu MU, Guokun DAI, Yanan MA, 2022: A Nonlinear Representation of Model Uncertainty in a Convective-Scale Ensemble Prediction System, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1432-1450.  doi: 10.1007/s00376-022-1341-x
    [4] WANG Weiwen, WANG Dongxiao, ZHOU Wen, LIU Qinyan, YU Yongqiang, LI Chao, 2011: Impact of the South China Sea Throughflow on the Pacific Low-Latitude Western Boundary Current: A Numerical Study for Seasonal and Interannual Time Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1367-1376.  doi: 10.1007/s00376-011-0142-4
    [5] Masafumi Kamachi, Tsurane Kuragano, Noriya Yoshioka, Jiang Zhu, Francesco Uboldi, 2001: Assimilation of Satellite Altimetry into a Western North Pacific Operational Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 767-786.
    [6] Xing ZHANG, Mu MU, Qiang WANG, Stefano PIERINI, 2017: Optimal Precursors Triggering the Kuroshio Extension State Transition Obtained by the Conditional Nonlinear Optimal Perturbation Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 685-699.  doi: 10.1007/s00376-017-6263-7
    [7] WANG Qiang, MU Mu, Henk A. DIJKSTRA, 2012: Application of the Conditional Nonlinear Optimal Perturbation Method to the Predictability Study of the Kuroshio Large Meander, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 118-134.  doi: 10.1007/s00376-011-0199-0
    [8] Yonghan CHOI, Joowan KIM, Dong-Kyou LEE, 2012: Characteristics and Nonlinear Growth of the Singular Vector Related to a Heavy Rainfall Case over the Korean Peninsula, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 10-28.  doi: 10.1007/s00376-011-0194-5
    [9] Zhida HUANG, Hailong LIU, Pengfei LIN, Jianyu HU, 2017: Influence of Island Chains on the Kuroshio Intrusion in the Luzon Strait, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 397-410.  doi: 10.1007/s00376-016-6159-y
    [10] Xu Yinlong, Zhou Mingyu, 1999: Numerical Simulations on the Explosive Cyclogenesis over the Kuroshio Current, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 64-76.  doi: 10.1007/s00376-999-0004-5
    [11] Jing WANG, Bin WANG, Juanjuan LIU, Yongzhu LIU, Jing CHEN, Zhenhua HUO, 2020: Application and Characteristic Analysis of the Moist Singular Vector in GRAPES-GEPS, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1164-1178.  doi: 10.1007/s00376-020-0092-9
    [12] Xin LIU, Jing CHEN, Yongzhu LIU, Zhenhua HUO, Zhizhen XU, Fajing CHEN, Jing WANG, Yanan MA, Yumeng HAN, 2024: An Initial Perturbation Method for the Multiscale Singular Vector in Global Ensemble Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 545-563.  doi: 10.1007/s00376-023-3035-4
    [13] Jianqi ZHANG, Chongyin LI, Xin LI, Chao ZHANG, Jingjing CHEN, 2021: The Asymmetric Atmospheric Response to the Decadal Variability of Kuroshio Extension during Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 785-799.  doi: 10.1007/s00376-020-0264-7
    [14] LI Rui, ZHANG Zuowei, WU Lixin, 2014: High-Resolution Modeling Study of the Kuroshio Path Variations South of Japan, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1233-1244.  doi: 10.1007/s00376-014-3230-4
    [15] Zhida HUANG, Hailong LIU, Jianyu HU, Pengfei LIN, 2016: A Double-Index Method to Classify Kuroshio Intrusion Paths in the Luzon Strait, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 715-729.  doi: 10.1007/s00376-015-5171-y
    [16] Hye-Ryun OH, Chang-Hoi HO, Yong-Sang CHOI, 2013: Comments on ``Direct Radiative Forcing of Anthropogenic Aerosols over Oceans from Satellite Observation", ADVANCES IN ATMOSPHERIC SCIENCES, 30, 10-14.  doi: 10.1007/s00376-012-1218-5
    [17] Guidi ZHOU, Xuhua CHENG, 2022: Impacts of Oceanic Fronts and Eddies in the Kuroshio-Oyashio Extension Region on the Atmospheric General Circulation and Storm Track, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 22-54.  doi: 10.1007/s00376-021-0408-4
    [18] ZHAI Fangguo, WANG Qingye, WANG Fujun, Hu Dunxin, 2014: Variation of the North Equatorial Current, Mindanao Current, and Kuroshio Current in a High-Resolution Data Assimilation during 20082012, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1445-1459.  doi: 10.1007/s00376-014-3241-1
    [19] Yujie WU, Wansuo DUAN, 2018: Impact of SST Anomaly Events over the Kuroshio-Oyashio Extension on the "Summer Prediction Barrier", ADVANCES IN ATMOSPHERIC SCIENCES, 35, 397-409.  doi: 10.1007/s00376-017-6322-0
    [20] Ruosi ZHANG, Shang-Ping XIE, Lixiao XU, Qinyu LIU, 2016: Changes in Mixed Layer Depth and Spring Bloom in the Kuroshio Extension under Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 452-461.  doi: 10.1007/s00376-015-5113-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 02 July 2018
Manuscript revised: 16 October 2018
Manuscript accepted: 29 October 2018
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Errors in Current Velocity in the Low-latitude North Pacific: Results from the Regional Ocean Modeling System

    Corresponding author: Wansuo DUAN, duanws@lasg.iap.ac.cn
  • 1. The State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Using the Regional Ocean Modeling System, this study investigates the simulation uncertainties in the current velocity in the low-latitude North Pacific where the Kuroshio originates [i.e., the beginning of the Kuroshio (BK)]. The results show that the simulation uncertainties largely reflect the contributions of wind stress forcing errors, especially zonal wind stress errors, rather than initial or boundary errors. Using the idea of a nonlinear forcing singular vector, two types of zonal wind stress errors (but sharing one EOF mode) are identified from error samples derived from reanalysis data as having the potential to yield large simulation uncertainties. The type-1 error possesses a pattern with positive anomalies covering the two zonal bands of 0°-15°N and 25°-40°N in the Pacific Ocean, with negative anomalies appearing between these two bands; while the type-2 error is almost opposite to the type-1 error. The simulation uncertainties induced by the type-1 and -2 errors consist of both large-scale circulation errors controlled by a mechanism similar to the Sverdrup relation and mesoscale eddy-like errors generated by baroclinic instability. The type-1 and -2 errors suggest two areas: one is located between the western boundary and the meridional 130°E along 15°-20°N, and the other is located between 140°-150°E and along 15°-20°N. The reduction of errors over these two areas can greatly improve the simulation accuracy of the current velocity at BK. These two areas represent sensitive areas for targeted observations associated with the simulation of the current velocity at BK.

摘要: 该研究使用著名的区域海洋模式ROMS(Regional Ocean Modeling System), 对源区黑潮流速的模拟不确定性进行了解剖式研究. 结果表明, 在驱动模式运行的初始条件, 边界条件, 以及风应力外强迫中, 风应力强迫误差, 特别是纬向风应力误差常常导致源区黑潮流速具有更大的模拟误差. 为了揭示对源区黑潮模拟不确定性具有最大影响的纬向风应力误差, 本研究基于历史分析资料, 利用集合的办法, 识别了对源区黑潮具有最大影响的非线性强迫奇异向量(nonlinear forcing singular vector; NFSV)型-纬向风应力误差. 该误差可分为两种类型, 即type-1和type-2误差. type-1误差位于0°–15°N, 25°–40°N两个纬度带内, 且表现为横跨太平洋海盆的正风应力误差, 而在这两个纬度带之间的区域, type-1误差则表现为横跨太平洋海盆的负风应力误差; type-2误差与type-1型结构相同, 但符号几乎相反. type-1和type-2误差对源区黑潮流速模拟的影响, 一方面通过改变大尺度海洋环流影响源区黑潮的模拟; 另一方面则诱发海洋中尺度涡, 并促使其西移而影响源区黑潮. 根据type-1和type-2误差, 并通过敏感性实验, 确定了能够有效改善源区黑潮模拟效果的目标观测敏感区, 即位于15°–20°N之间, 呈东西分布, 且包含两个区域: 一个区域位于西边界与130°E之间; 另一个则位于135°–150°E之间.

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return