Advanced Search
Article Contents

Preface to the Special Issue on Atmospheric Oxidation Capacity, Ozone, and PM2.5 Pollution: Quantification Methods, Formation Mechanisms, Simulation, and Control

Fund Project:

It would have been impossible to produce this special issue without the contributions of the guest editors and the AAS editorial team. This special issue is in part supported by the National Key R&D Program of China (Grant No. 2017YFC0210000)


doi: 10.1007/s00376-021-1001-6

  • 加载中
  • An, J. L., H. Lv, M. Xue, Z. F. Zhang, B. Hu, J. X. Wang, and B. Zhu, 2021: Analysis of the effect of optical properties of black carbon on ozone in an urban environment at the Yangtze River Delta, China. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0367-9.
    Bai, K. X., C. Wu, J. J. Li, K. Li, J. P. Guo, and G. H. Wang, 2021: Characteristics of chemical speciation in PM1 in six representative regions in China. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-020-0224-2.
    Bei, N., and Coauthors, 2021: Impacts of aerosol-radiation interactions on the wintertime particulate pollution under different synoptic patterns in the Guanzhong Basin, China. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-020-0329-7.
    Cui, M., X. Q. An, L. Xing, G. H. Li, G. Q. Tang, J. J. He, X. Long, and S. M. Zhao, 2021: Simulated sensitivity of ozone generation to precursors in Beijing during a high O3 episode. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0270-4.
    Du, W., and Coauthors, 2021: Particulate amines in the background atmosphere of Yangtze River Delta, China: Concentration, size distribution, and sources. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0274-0.
    Kang, Y. Y. G. Q. Tang, Q. H. Li, B. X. Liu, J. F. Cao, Q. H. Hu, and Y. S. Wang, 2021: Evaluation and evolution of MAX-DOAS-observed vertical NO2 profiles in urban Beijing. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0370-1.
    Liu, Y. H., and Coauthors, 2021: Vertical profiles of volatile organic compounds in suburban Shanghai. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0126-y.
    Qian, Y. Y., Y. H. Luo, F. Q. Si, T. P. Yang, and D. S. Yang, 2021: Three-year observations of ozone columns over polar vortex edge area above West Antarctica. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0243-7.
    Wang, F. L., W. Du, S. J. Lyu, Z. J. Ding, and G. H. Wang, 2021a: Spatial and temporal distributions and sources of anthropogenic NMVOCs in the atmosphere of China: A review. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0317-6.
    Wang, Y., J. Zhao, H. H. Liu, Y. Li, W. B. Dong, and Y. L.Wu, 2021b: Photooxidation of methacrolein in Fe(III)-Oxalate aqueous system and its atmospheric implication. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0415-5.
    Wu, S., G. Q. Tang, Y. H. Wang, R. Mai, D. Yao, Y. Y. Kang, Q. L. Wang, and Y. S. Wang, 2021: Vertical evolution of boundary layer volatile organic compounds in summer over the North China Plain and the differences with winter. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-020-0254-9.
    Xu, L., L. Du, N. T. Tsona, and M. F. Ge, 2021: Anthropogenic effects on biogenic secondary organic aerosol formation. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-020-0284-3.
    Xue, M., J. Z. Ma, G. Q. Tang, S. R. Tong, B. Hu, X. R. Zhang, X. R. Li, and Y. S. Wang, 2021: ROx budgets and O3 formation during summertime at Xianghe Suburban Site in the North China Plain. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0327-4.
    Zhang, H. L., Y. F. Xu, L. Jia, and M. Xu, 2021: Smog Chamber Study on the Ozone Formation Potential of Acetaldehyde. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0407-5.
    Zhu, Q., L.-M. Cao, M.-X. Tang, X.-F. Huang, E. Saikawa, and L.-Y. He, 2021: Characterization of organic aerosol at a rural site in the North China Plain region: Sources, volatility and organonitrates. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-020-0127-2.
  • [1] Zhixuan TONG, Yingying YAN, Shaofei KONG, Jintai LIN, Nan CHEN, Bo ZHU, Jing MA, Tianliang ZHAO, Shihua QI, 2024: Distribution and Formation Causes of PM2.5 and O3 Double High Pollution Events in China during 2013–20, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3156-9
    [2] Jing QIAN, Hong LIAO, 2024: Effectiveness of precursor emission reductions for the control of summertime ozone and PM2.5 in the Beijing–Tianjin–Hebei region under different meteorological conditions, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-4071-4
    [3] Miaomiao LU, Xiao TANG, Zifa WANG, Lin WU, Xueshun CHEN, Shengwen LIANG, Hui ZHOU, Huangjian WU, Ke HU, Longjiao SHEN, Jia YU, Jiang ZHU, 2019: Investigating the Transport Mechanism of PM2.5 Pollution during January 2014 in Wuhan, Central China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1217-1234.  doi: 10.1007/s00376-019-8260-5
    [4] Robin T. CLARK, Xiquan DONG, Chang-Hoi HO, Jianhua SUN, Huiling YUAN, Tetsuya TAKEMI, 2021: Preface to the Special Issue on Summer 2020: Record Rainfall in Asia — Mechanisms, Predictability and Impacts, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1977-1979.  doi: 10.1007/s00376-021-1010-5
    [5] Lan GAO, Xu YUE, Xiaoyan MENG, Li DU, Yadong LEI, Chenguang TIAN, Liang QIU, 2020: Comparison of Ozone and PM2.5 Concentrations over Urban, Suburban, and Background Sites in China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1297-1309.  doi: 10.1007/s00376-020-0054-2
    [6] LIU Dameng, GAO Shaopeng, AN Xianghua, 2008: Distribution and Source Apportionment of Polycyclic Aromatic Hydrocarbons from Atmospheric Particulate Matter PM2.5 in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 297-305.  doi: 10.1007/s00376-008-0297-9
    [7] Denghui JI, Zhaoze DENG, Xiaoyu SUN, Liang RAN, Xiangao XIA, Disong FU, Zijue SONG, Pucai WANG, Yunfei WU, Ping TIAN, Mengyu HUANG, 2020: Estimation of PM2.5 Mass Concentration from Visibility, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 671-678.  doi: 10.1007/s00376-020-0009-7
    [8] TAO Jun, CHENG Tiantao, ZHANG Renjian, CAO Junji, ZHU Lihua, WANG Qiyuan, LUO Lei, and ZHANG Leiming, 2013: Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1070-1084.  doi: 10.1007/s00376-012-2168-7
    [9] Huijun WANG, 2017: Preface to the Special Issue on the "Forecast and Evaluation of Meteorological Disasters" (FEMD), ADVANCES IN ATMOSPHERIC SCIENCES, 34, 127-128.  doi: 10.1007/s00376-016-6007-0
    [10] Shang-Ping XIE, 2016: Preface to the Special Issue "Unified Perspective of Climate Variability and Change", ADVANCES IN ATMOSPHERIC SCIENCES, 33, 409-410.  doi: 10.1007/s00376-015-0003-7
    [11] Stephen BELCHER, Peter STOTT, Lianchun SONG, Qingchen CHAO, Riyu LU, Tianjun ZHOU, 2018: Preface to Special Issue on Climate Science for Service Partnership China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 897-898.  doi: 10.1007/s00376-018-8002-0
    [12] Jiang ZHU, 2017: Preface to the Special Issue on Commemorating the Centenary of Duzheng YE's Birth, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1135-1136.  doi: 10.1007/s00376-017-7002-9
    [13] Xiquan DONG, 2018: Preface to the Special Issue: Aerosols, Clouds, Radiation, Precipitation, and Their Interactions, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 133-134.
    [14] Liguang WU, Bin WANG, Johnny C. L. CHAN, Kyung-Ja HA, Il-Ju MOON, Jun MATSUMOTO, Zhemin TAN, Ke FAN, 2022: Preface to the Special Issue: Climate Change and Variability of Tropical Cyclone Activity, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 203-204.  doi: 10.1007/s00376-021-1020-3
    [15] Tianbao ZHAO, Aiguo DAI, Jianping HUANG, Lixia ZHANG, 2024: Preface to the Special Issue on Causes, Impacts, and Predictability of Droughts for the Past, Present, and Future, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 191-192.  doi: 10.1007/s00376-023-3017-6
    [16] Peng ZHANG, Jun YANG, Jinsong WANG, Xinwen YU, 2021: Preface to the Special Issue on Fengyun Meteorological Satellites: Data, Application and Assessment, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1265-1266.  doi: 10.1007/s00376-021-1002-5
    [17] Tianjun Zhou, 2020: Preface to Special Issue on CMIP6 Experiments: Model and Dataset Descriptions, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1033-1033.  doi: 10.1007/s00376-020-0008-8
    [18] Jiping LIU, David BROMWICH, Dake CHEN, Raul CORDERO, Thomas JUNG, Marilyn RAPHAEL, John TURNER, Qinghua YANG, 2020: Preface to the Special Issue on Antarctic Meteorology and Climate: Past, Present and Future, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 421-422.  doi: 10.1007/s00376-020-2001-7
    [19] Roeland Cornelis JANSEN, SHI Yang, CHEN Jianmin, HU YunJie, XU Chang, HONG Shengmao, LI Jiao, ZHANG Min, 2014: Using Hourly Measurements to Explore the Role of Secondary Inorganic Aerosol in PM2.5 during Haze and Fog in Hangzhou, China, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1427-1434.  doi: 10.1007/s00376-014-4042-2
    [20] XIN Jinyuan, WANG Yuesi, WANG Lili, TANG Guiqian, SUN Yang, PAN Yuepeng, JI Dongsheng, 2012: Reductions of PM2.5 in Beijing--Tianjin--Hebei Urban Agglomerations during the 2008 Olympic Games, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1330-1342.  doi: 10.1007/s00376-012-1227-4

Get Citation+

Export:  

Share Article

Manuscript History

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Preface to the Special Issue on Atmospheric Oxidation Capacity, Ozone, and PM2.5 Pollution: Quantification Methods, Formation Mechanisms, Simulation, and Control

  • State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract: 

  • The atmospheric oxidation capacity (AOC) is the essential driving force of atmospheric chemistry in forming complex air pollution, which determines the removal rate of trace gases and the production rates of secondary pollutants. The processes and rates of species being oxidized in the atmosphere thus constitute the key factors to quantify the AOC. Currently, the term “oxidation capacity” is defined as the sum of the respective oxidation rates of the molecules (VOCs, CO, CH4, etc.) by the main oxidizing agents (OH, O3, NO3, etc.), and these oxidation processes are described in atmospheric chemical reaction mechanisms such as the RACM (Regional Atmospheric Chemistry Mechanism) and the MCM (Master Chemical Mechanism). However, these mechanisms cannot explain the rapid secondary aerosol production observed in polluted environments such as winter haze in China, suggesting the existence of missing AOC mechanisms participating in the formation of secondary aerosols. Thus, a deeper understanding of AOC remains a challenging endeavor and is the priority before any efficient pollution mitigation can take place.

    This special issue, consisting of three parts, mainly focuses on the quantification and simulation of AOC processes. Topics include: field observation of key oxidizing species and their precursors in urban and suburban environments (See Bai et al., 2021; Du et al., 2021; Kang et al., 2021; Liu et al., 2021; Qian et al., 2021; Wang et al., 2021a; Wu et al., 2021; Zhu et al., 2021); laboratory dynamics studies on the ozone formation potential of acetaldehyde, the photooxidation mechanism of methacrolein, anthropogenic effects on biogenic secondary organic aerosol formation to include the contribution of the free radical sources (Xu et al., 2021; Zhang et al., 2021; Wang et al., 2021b); and numerical modeling studies to quantify the ROx budget and O3 photochemical production in urban environments (Bei et al., 2021; Xue et al., 2021; Cui et al., 2021; An et al., 2021).

    The papers in this special issue of Advances in Atmospheric Sciences provide valuable datasets from the spatial and temporal distributions and sources of oxidizing species and their precursors, as well as useful information about the laboratory dynamics and model simulations on AOC processes. Nonetheless, more in-depth analyses and attributions are still needed for AOC quantification and simulations to further understand the secondary formation processes and improve the atmospheric chemistry mechanisms.

    Acknowledgements. It would have been impossible to produce this special issue without the contributions of the guest editors and the AAS editorial team. This special issue is in part supported by the National Key R&D Program of China (Grant No. 2017YFC0210000).

Reference

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return