Advanced Search
Article Contents

ST-LSTM-SA:A new ocean sound velocity fields prediction model based on deep learning

Fund Project:

This work was supported by National Natural Science Foundation of China (42004030), Basic Scientific Fund for National Public Research Institutes of China (2022S03), Science and Technology Innovation Project (LSKJ202205102) Funded by Laoshan Laboratory, and National Key Research and Development Program of China (2020YFB0505805).


doi:  10.1007/s00376-024-3219-6

  • The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean. Among the crucial hydroacoustic environment parameters, ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to ocean research. In this study, we propose a new data-driven approach, leveraging deep learning techniques, for the prediction of sound velocity fields (SVFs). Our novel spatiotemporal prediction model, ST-LSTM-SA, combines Spatiotemporal Long Short-Term Memory (ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs. To circumvent the limited amount of observation data, we employ transfer learning by firstly training the model using reanalysis datasets, followed by fine-tuning with the in-situ analysis data to obtain the final prediction model. By utilizing the historical 12-months SVFs as input, our model predicts the SVFs for the subsequent 3-months. We compare the performance of five models: Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Convolutional LSTM (ConvLSTM), ST-LSTM, and our proposed ST-LSTM-SA model in the test experiment spanning from 2019 to 2022. Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions. The ST-LSTM-SA model not only predicts the ocean sound velocity field (SVF) accurately, but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.
  • [1] Xiaoran DONG, Yafei NIE, Jinfei WANG, Hao LUO, Yuchun GAO, Yun WANG, Jiping LIU, Dake CHEN, Qinghua YANG, 2024: Deep Learning Shows Promise for Seasonal Prediction of Antarctic Sea Ice in a Rapid Decline Scenario, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3380-y
    [2] Lei HAN, Mingxuan CHEN, Kangkai CHEN, Haonan CHEN, Yanbiao ZHANG, Bing LU, Linye SONG, Rui QIN, 2021: A Deep Learning Method for Bias Correction of ECMWF 24–240 h Forecasts, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1444-1459.  doi: 10.1007/s00376-021-0215-y
    [3] Yunqing LIU, Lu YANG, Mingxuan CHEN, Linye SONG, Lei HAN, Jingfeng XU, 2024: A Deep Learning Approach for Forecasting Thunderstorm Gusts in the Beijing–Tianjin–Hebei Region, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3255-7
    [4] Jiang HUANGFU, Zhiqun HU, Jiafeng ZHENG, Lirong WANG, Yongjie ZHU, 2024: Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 1147-1160.  doi: 10.1007/s00376-023-3039-0
    [5] Kanghui ZHOU, Jisong SUN, Yongguang ZHENG, Yutao ZHANG, 2022: Quantitative Precipitation Forecast Experiment Based on Basic NWP Variables Using Deep Learning, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1472-1486.  doi: 10.1007/s00376-021-1207-7
    [6] Tingyu WANG, Ping HUANG, Xianke YANG, 2024: Understanding the Low Predictability of the 2015/16 El Niño Event Based on a Deep Learning Model, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3238-3
    [7] Lu LI, Yongjiu DAI, Zhongwang WEI, Wei SHANGGUAN, Nan WEI, Yonggen ZHANG, Qingliang LI, Xian-Xiang LI, 2024: Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3181-8
    [8] Chentao SONG, Jiang ZHU, Xichen LI, 2024: Assessments of Data-Driven Deep Learning Models on One-Month Predictions of Pan-Arctic Sea Ice Thickness, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3259-3
    [9] Temesgen Gebremariam ASFAW, Jing-Jia LUO, 2024: Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 449-464.  doi: 10.1007/s00376-023-3029-2
    [10] Ruian TIE, Chunxiang SHI, Gang WAN, Xingjie HU, Lihua KANG, Lingling GE, 2022: CLDASSD: Reconstructing Fine Textures of the Temperature Field Using Super-Resolution Technology, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 117-130.  doi: 10.1007/s00376-021-0438-y
    [11] Jinhe YU, Lei BI, Wei HAN, Xiaoye ZHANG, 2022: Application of a Neural Network to Store and Compute the Optical Properties of Non-Spherical Particles, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2024-2039.  doi: 10.1007/s00376-021-1375-5
    [12] Tingyu WANG, Ping HUANG, 2024: Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 141-154.  doi: 10.1007/s00376-023-3001-1
    [13] Ya WANG, Gang HUANG, Baoxiang PAN, Pengfei LIN, Niklas BOERS, Weichen TAO, Yutong CHEN, BO LIU, Haijie LI, 2024: Correcting Climate Model Sea Surface Temperature Simulations with Generative Adversarial Networks: Climatology, Interannual Variability, and Extremes, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3288-6
    [14] Pumeng LYU, Tao TANG, Fenghua LING, Jing-Jia LUO, Niklas BOERS, Wanli OUYANG, Lei BAI, 2024: ResoNet: Robust and Explainable ENSO Forecasts with Hybrid Convolution and Transformer Networks, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3316-6
    [15] Gang HUANG, Ya WANG, Yoo-Geun HAM, Bin MU, Weichen TAO, Chaoyang XIE, 2024: Toward a Learnable Climate Model in the Artificial Intelligence Era, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3305-9
    [16] Yitian ZHOU, Ruifen ZHAN, Yuqing WANG, Peiyan CHEN, Zhemin TAN, Zhipeng XIE, Xiuwen NIE, 2024: A Physics-informed Deep-learning Intensity Prediction Scheme for Tropical Cyclones over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3282-z
    [17] Jiaqi Zheng, Qing Ling, Jia Li, Yerong Feng, 2023: Improving Short-Range Precipitation Forecast of Numerical Weather Prediction Through a Deep Learning-Based Mask Approach, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3085-7
    [18] Feng Guolin, Cao Hongxing, Gao Xinquan, Dong Wenjie, Chou Jifan, 2001: Prediction of Precipitation during Summer Monsoon with Self-memorial Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 701-709.
    [19] Song Yang, Fenghua Ling, Jing-Jia Luo, Lei Bai, 2024: Improving Seasonal Forecast of Summer Precipitation in Southeastern China using CycleGAN Deep Learning Bias Correction, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-4003-3
    [20] Igor Oliveira RIBEIRO, Rodrigo Augusto Ferreira de SOUZA, Rita Valèria ANDREOLI, Mary Toshie KAYANO, Patrícia dos Santos COSTA, 2016: Spatiotemporal Variability of Methane over the Amazon from Satellite Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 852-864.  doi: 10.1007/s00376-016-5138-7

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 12 September 2023
Manuscript revised: 05 February 2024
Manuscript accepted: 01 March 2024
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

ST-LSTM-SA:A new ocean sound velocity fields prediction model based on deep learning

Abstract: The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean. Among the crucial hydroacoustic environment parameters, ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to ocean research. In this study, we propose a new data-driven approach, leveraging deep learning techniques, for the prediction of sound velocity fields (SVFs). Our novel spatiotemporal prediction model, ST-LSTM-SA, combines Spatiotemporal Long Short-Term Memory (ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs. To circumvent the limited amount of observation data, we employ transfer learning by firstly training the model using reanalysis datasets, followed by fine-tuning with the in-situ analysis data to obtain the final prediction model. By utilizing the historical 12-months SVFs as input, our model predicts the SVFs for the subsequent 3-months. We compare the performance of five models: Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Convolutional LSTM (ConvLSTM), ST-LSTM, and our proposed ST-LSTM-SA model in the test experiment spanning from 2019 to 2022. Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions. The ST-LSTM-SA model not only predicts the ocean sound velocity field (SVF) accurately, but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return