Advanced Search
Article Contents

Development and Propagation of Equatorial Waves


doi: 10.1007/s00376-997-0053-6

  • Development and propagation of equatorial waves are investigated with the model which includes convection -wave convergence feedback and convection-frictional convergence feedback. Two experiments with an initial Kelvin wave (Exp. K) and with an initial Rossby wave (Exp. R) are carried out. The equatorial waves in Exp. R grow much faster than those in Exp. K. The equatorial waves in both experiments follow zonal (eastward / westward) and meridional (poleward) propagation. The equatorial waves can be partitioned into two meridional modes using Parabolic Cylinder Function. An equa?tor mode denotes a wave component with a positive precipitation center at the equator and an off-equator mode rep?resents a wave component with positive precipitation centers off the equator. The equator mode dominates in Exp. K whereeas the off-equator mode dominates in Exp. R. The rapid wave growth in Exp. R is interpreted by analyzing the eddy available potential energy (EAPE) generation. Stronger off-equator mode in Exp. R obtains more EAPE through convection-frictional convergence feedback which results in more rapid wave growth. The relative vorticity tendency is determined by interactions between Earth’s vorticity and lower-troposphere convergence (divergence effect) and between the meridional gradient and lower-troposphere circulation (beta effect). The eastward and poleward propagation of equatorial waves is a result of the divergence effect, and the westward movement is caused by the beta effect.
  • [1] ZHANG Jinqiang, XUAN Yuejian, YAN Xiaolu, LIU Mingyuan, TIAN Hongmin, XIA Xiang'ao, PANG Li, and ZHENG Xiangdong, 2014: Development and Preliminary Evaluation of a Double-cell Ozonesonde, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 938-947.  doi: 10.1007/s00376-013-3104-1
    [2] Jianpu BIAN, Juan FANG, Guanghua CHEN, Chengji LIU, 2018: Circulation Features Associated with the Record-breaking Typhoon Silence in August 2014, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1321-1336.  doi: 10.1007/s00376-018-7294-4
    [3] Lu Keli, Zhu Yongchun, 1994: Seasonal Variation of Stationary and Low-Frequency Rossby Wave Rays, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 427-435.  doi: 10.1007/BF02658163
    [4] Yong. L. McHall, 1990: Generalized Available Potential Energy, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 395-408.  doi: 10.1007/BF03008870
    [5] GAO Shouting, ZHOU Yushu, CUI Xiaopeng, DAI Guoping, 2004: Impacts of Cloud-Induced Mass Forcing on the Development of Moist Potential Vorticity Anomaly During Torrential Rains, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 923-927.  doi: 10.1007/BF02915594
    [6] Zheng Xingyu, Zeng Qingcun, Huang Ronghui, 1991: The Propagation of Inertia-Gravity Waves and Their Influence on Mean Zonal Flow, Part One: the Propagation of Inertia-Gravity Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 431-446.  doi: 10.1007/BF02919266
    [7] Chen Wen, Huang Ronghui, 2002: The Propagation and Transport Effect of Planetary Waves in the Northern Hemisphere Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 1113-1126.  doi: 10.1007/s00376-002-0069-x
    [8] YI Bingqi, 2010: Near-equatorial Typhoon Development: Climatology and Numerical Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1014-1024.  doi: 10.1007/s00376-009-9033-3
    [9] CUI Xiaopeng, GAO Shouting, WU Guoxiong, 2003: Up-Sliding Slantwise Vorticity Development and the Complete Vorticity Equation with Mass Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 825-836.  doi: 10.1007/BF02915408
    [10] YANG Jing, BAO Qing, WANG Xiaocong, 2013: Intensified Eastward and Northward Propagation of Tropical Intraseasonal Oscillation over the Equatorial Indian Ocean in a Global Warming Scenario, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 167-174.  doi: 10.1007/s00376-012-1260-3
    [11] Zheng Xingyu, Zeng Qingcun, Huang Ronghui, 1992: The Propagation of Inertia-Gravity Waves and Their Influence on Zonal Mean Flow Part Two: Wave Breaking and Critical Levels, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 29-36.  doi: 10.1007/BF02656927
    [12] Brian HOSKINS, 2015: Potential Vorticity and the PV Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 2-9.  doi: 10.1007/s00376-014-0007-8
    [13] H.L. Kuo, 1995: Three-dimensional Global Scale Permanent-wave Solutions of the Nonlinear Quasigeostrophic Potential Vorticity Equation and Energy Dispersion, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 387-404.  doi: 10.1007/BF02657001
    [14] ZUO Qunjie, GAO Shouting, LU Daren, 2012: Kinetic and Available Potential Energy Transport during the Stratospheric Sudden Warming in January 2009, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1343-1359.  doi: 10.1007/s00376-012-1198-5
    [15] Dong ZHENG, Yijun ZHANG, Qing MENG, Luwen CHEN, Jianru DAN, 2016: Climatology of Lightning Activity in South China and Its Relationships to Precipitation and Convective Available Potential Energy, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 365-376.  doi: 10.1007/s00376-015-5124-5
    [16] CHEN Hua*, 2015: Downstream Development of Baroclinic Waves in the Midlatitude Jet Induced by Extratropical Transition: A Case Study, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 528-540.  doi: 10.1007/s00376-014-3263-8
    [17] Zuohao CAO, Da-Lin ZHANG, 2004: Tracking Surface Cyclones with Moist Potential Vorticity, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 830-835.  doi: 10.1007/BF02916379
    [18] Chanh Q. KIEU, Da-Lin ZHANG, 2012: Is the Isentropic Surface Always Impermeable to the Potential Vorticity Substance?, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 29-35.  doi: 10.1007/s00376-011-0227-0
    [19] Li Maicun, 1987: EQUATORIAL SOLITARY WAVES OF TROPICAL ATMOSPHERIC MOTION IN SHEAR FLOW, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 125-136.  doi: 10.1007/BF02677059
    [20] Cory BARTON, Ming CAI, 2017: Equatorial Wave Expansion of Instantaneous Flows for Diagnosis of Equatorial Waves from Data: Formulation and Illustration, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1219-1234.  doi: 10.1007/s00376-017-6323-z

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1997
Manuscript revised: 10 July 1997
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Development and Propagation of Equatorial Waves

  • 1. Department of Physics, University of Toronto, Toronto, Ontario, Canada, M5S1A7,Department of Physics, University of Toronto, Toronto, Ontario, Canada, M5S1A7

Abstract: Development and propagation of equatorial waves are investigated with the model which includes convection -wave convergence feedback and convection-frictional convergence feedback. Two experiments with an initial Kelvin wave (Exp. K) and with an initial Rossby wave (Exp. R) are carried out. The equatorial waves in Exp. R grow much faster than those in Exp. K. The equatorial waves in both experiments follow zonal (eastward / westward) and meridional (poleward) propagation. The equatorial waves can be partitioned into two meridional modes using Parabolic Cylinder Function. An equa?tor mode denotes a wave component with a positive precipitation center at the equator and an off-equator mode rep?resents a wave component with positive precipitation centers off the equator. The equator mode dominates in Exp. K whereeas the off-equator mode dominates in Exp. R. The rapid wave growth in Exp. R is interpreted by analyzing the eddy available potential energy (EAPE) generation. Stronger off-equator mode in Exp. R obtains more EAPE through convection-frictional convergence feedback which results in more rapid wave growth. The relative vorticity tendency is determined by interactions between Earth’s vorticity and lower-troposphere convergence (divergence effect) and between the meridional gradient and lower-troposphere circulation (beta effect). The eastward and poleward propagation of equatorial waves is a result of the divergence effect, and the westward movement is caused by the beta effect.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return