Advanced Search
Article Contents

On the Unified Theory of Atmospheric Particle Systems Part II: Self-affine Particles


doi: 10.1007/s00376-997-0057-2

  • As the second attempt at unifying treatment of atmospheric particle systems, this paper further examines shape characterization of atmospheric particles. First, to support the theoretical framework developed in Part I, methods for studying non-spherical particles are reviewed. It is argued that these different methods can be unified under fractal geometry through the generalized power laws given in Part I. Empirical power-laws for hydrometeors scat-tered in literature since 1935 are summarized and reevaluated in terms of fractals. Second, generalization from self-similar to self-affine particles is discussed. Self-affinity of atmospheric particles is exemplified by examining the exponents in the power laws between the length along a- and c-axis of ice crystals. It is argued that unlike Euclidean and self-similar particles, self-affine particles do not have a simple dimensional relation between original particles and their projections; the relation for projection of self-similar particles and Mandelbrot’ thumb rules for intersection respectively set the lower and upper bound. Using published data, self-affine particles are shown to exist in the at-mosphere. The existence of self-affine particles in turn calls for instruments that can simultaneously measure mass, area and maximum diameter (or their equivalents).
  • [1] Yao Keya, Liu Chunlei, 1996: ICE Particle Size and Shape Effect on Solar Energy Scattering Angular Distribution, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 505-510.  doi: 10.1007/BF03342040
    [2] Liu Yangang, 1995: On the Generalized Theory of Atmospheric Particle Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 419-438.  doi: 10.1007/BF02657003
    [3] Yang Yang, Minqiang Zhou, Wei Wang, Zijun Ning, Feng Zhang, Pucai Wang, 2024: Quantification of CO2 emissions from three power plants in China using OCO-3 satellite measurements, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3293-9
    [4] FENG Qian, CUI Songxue, ZHAO Wei, 2015: Effect of Particle Shape on Dust Shortwave Direct Radiative Forcing Calculations Based on MODIS Observations for a Case Study, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1266-1276.  doi: 10.1007/s00376-015-4235-3
    [5] Yuesi WANG, Zirui LIU, 2021: Preface to the Special Issue on Atmospheric Oxidation Capacity, Ozone, and PM2.5 Pollution: Quantification Methods, Formation Mechanisms, Simulation, and Control, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1051-1052.  doi: 10.1007/s00376-021-1001-6
    [6] Li Xin, Hu Fei, Liu Gang, Hong Zhongxiang, 2001: Multi-scale Fractal Characteristics of Atmospheric Boundary-Layer Turbulence, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 787-792.
    [7] M. Y. Totagi, 1994: Power and Cross-Spectra for the Turbulent Atmospheric Motion and Transports in the Domain of Wave Number Frequency Space: Theoretical Aspects, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 491-498.  doi: 10.1007/BF02658170
    [8] Liu Chunlei, Yao Keya, 1997: Particle Size Truncation Effect on the Inference of Effective Particle Diameter, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 350-354.  doi: 10.1007/s00376-997-0055-4
    [9] Wang Angsheng, N. Fukuta, 1985: A QUANTITATIVE STUDY ON THE GROWTH LAW OF ICE CRYSTALS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 45-53.  doi: 10.1007/BF03179736
    [10] ZHU Bin, WANG Honglei, SHEN Lijuan, KANG Hanqing, YU Xingna, 2013: Aerosol Spectra and New Particle Formation Observed in Various Seasons in Nanjing, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1632-1644.  doi: 10.1007/s00376-013-2202-4
    [11] Sonia MONTECINOS, Patricia BARRIENTOS, 2006: Dependence of Upper Atmosphere Photochemistry on the Shape of the Diurnal Cycle of the Photolysis Rates, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 207-214.  doi: 10.1007/s00376-006-0207-y
    [12] Yu Rucong, 1994: A Two-Step Shape-Preserving Advection Scheme, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 479-490.  doi: 10.1007/BF02658169
    [13] Wang Angsheng, 1987: THE QUANTITATIVE GROWTH LAW OF ICE CRYSTALS AND ITS NEW MODEL, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 414-431.  doi: 10.1007/BF02656742
    [14] Peihua QIN, Zhenghui XIE, Jing ZOU, Shuang LIU, Si CHEN, 2021: Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 460-479.  doi: 10.1007/s00376-020-0141-4
    [15] Wang Junbo, Wu Jian, Feng Zhichao, 1986: PROBABILITY OF RECEIVED-POWER FLUCTUATION OF AN OPTICAL SYSTEM IN THE TURBULENT ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 371-378.  doi: 10.1007/BF02678657
    [16] Yi ZHANG, Rucong YU, Jian LI, 2017: Implementation of a Conservative Two-step Shape-Preserving Advection Scheme on a Spherical Icosahedral Hexagonal Geodesic Grid, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 411-427.  doi: 10.1007/s00376-016-6097-8
    [17] LI Pingyang, JIANG Weimei, SUN Jianning, YUAN Renmin, 2003: A Laboratory Modeling of the Velocity Field in the Convective Boundary Layer with the Particle Image Velocimetry Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 631-637.  doi: 10.1007/BF02915506
    [18] Jun ZHANG, Jiming SUN, Wei DENG, Wenhao HU, Yongqing WANG, 2023: The Importance of the Shape Parameter in a Bulk Parameterization Scheme to the Evolution of the Cloud Droplet Spectrum during Condensation, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 155-167.  doi: 10.1007/s00376-022-2065-7
    [19] Tuanjie HOU, Baojun CHEN, Hengchi LEI, Lei WEI, Youjiang HE, Qiujuan FENG, 2023: Evaluation of the Predicted Particle Properties (P3) Microphysics Scheme in Simulations of Stratiform Clouds with Embedded Convection, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 1859-1876.  doi: 10.1007/s00376-023-2178-7
    [20] CAO Jie, Qin XU, 2011: Computing Streamfunction and Velocity Potential in a Limited Domain of Arbitrary Shape. Part II: Numerical Methods and Test Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1445-1458.  doi: 10.1007/s00376-011-0186-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1997
Manuscript revised: 10 July 1997
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

On the Unified Theory of Atmospheric Particle Systems Part II: Self-affine Particles

  • 1. Desert Research Institute, Atmospheric Sciences Center, Reno, NV 89506, USA

Abstract: As the second attempt at unifying treatment of atmospheric particle systems, this paper further examines shape characterization of atmospheric particles. First, to support the theoretical framework developed in Part I, methods for studying non-spherical particles are reviewed. It is argued that these different methods can be unified under fractal geometry through the generalized power laws given in Part I. Empirical power-laws for hydrometeors scat-tered in literature since 1935 are summarized and reevaluated in terms of fractals. Second, generalization from self-similar to self-affine particles is discussed. Self-affinity of atmospheric particles is exemplified by examining the exponents in the power laws between the length along a- and c-axis of ice crystals. It is argued that unlike Euclidean and self-similar particles, self-affine particles do not have a simple dimensional relation between original particles and their projections; the relation for projection of self-similar particles and Mandelbrot’ thumb rules for intersection respectively set the lower and upper bound. Using published data, self-affine particles are shown to exist in the at-mosphere. The existence of self-affine particles in turn calls for instruments that can simultaneously measure mass, area and maximum diameter (or their equivalents).

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return