Advanced Search
Article Contents

The Development and Initial Tests of an Atmospheric Model Based on a Vertical Coordinate with a Smooth Transition from Terrain Following to Isentropic Coordinates


doi: 10.1007/s00376-998-0001-0

  • An atmospheric model (η model) is developed by modifying the UW θ-σ hybrid model. In the η model, the vertical coordinate transforms smoothly from terrain following to isentropic coordinates. The model is developed to capitalize on the inherent advantage of numerical modeling in isentropic coordinates and to eliminate the interface between the sigma planetary boundary layer and isentropic free atmosphere present in the UW θ-σ model. This formulation provides the potential for the data assimilation and the application of higher order schemes. This paper describes the structure of the η model and presents results from initial numerical experiments. The first experiment tests the capability of the η model for simulating the baroclinic development process. In the 48-hr numerical weather forecast experiment, the η model produces reasonable precipitation and synoptic fields at all levels which are similar to those from the UW θ-σ model. The second and third experiments test the capability of the η model for conserving 1) the joint distribution of isentropic potential vorticity (IPV) and proxy ozone and 2) equivalent potential temperature under frictionless and isentropic conditions. These experiments show that distributions of IPV and proxy ozone in the pure isentropic domain and the distributions of prognostic and diagnostic equivalent potential temperature in the model domain remain highly correlated to day 10.
  • [1] Hui LIU, Bo HU, Yuesi WANG, Guangren LIU, Liqin TANG, Dongsheng JI, Yongfei BAI, Weikai BAO, Xin CHEN, Yunming CHEN, Weixin DING, Xiaozeng HAN, Fei HE, Hui HUANG, Zhenying HUANG, Xinrong LI, Yan LI, Wenzhao LIU, Luxiang LIN, Zhu OUYANG, Boqiang QIN, Weijun SHEN, Yanjun SHEN, Hongxin SU, Changchun SONG, Bo SUN, Song SUN, Anzhi WANG, Genxu WANG, Huimin WANG, Silong WANG, Youshao WANG, Wenxue WEI, Ping XIE, Zongqiang XIE, Xiaoyuan YAN, Fanjiang ZENG, Fawei ZHANG, Yangjian ZHANG, Yiping ZHANG, Chengyi ZHAO, Wenzhi ZHAO, Xueyong ZHAO, Guoyi ZHOU, Bo ZHU, 2017: Two Ultraviolet Radiation Datasets that Cover China, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 805-815.  doi: 10.1007/s00376-017-6293-1
    [2] Lu LI, Yongjiu DAI, Zhongwang WEI, Wei SHANGGUAN, Nan WEI, Yonggen ZHANG, Qingliang LI, Xian-Xiang LI, 2024: Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3181-8
    [3] Wu Aiming, Ni Yunqi, 1999: A Hybrid Coupled Ocean-Atmosphere Model and ENSO Prediction Study, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 405-418.  doi: 10.1007/s00376-999-0019-y
    [4] WAN Liying, ZHU Jiang, WANG Hui, YAN Changxiang, Laurent BERTINO, 2009: A ``Dressed" Ensemble Kalman Filter Using the Hybrid Coordinate Ocean Model in the Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1042-1052.  doi: 10.1007/s00376-009-7208-6
    [5] Yueliang CHEN, Changxiang YAN, Jiang ZHU, 2018: Assimilation of Sea Surface Temperature in a Global Hybrid Coordinate Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1291-1304.  doi: 10.1007/s00376-018-7284-6
    [6] Jianfeng WANG, Ricardo M. FONSECA, Kendall RUTLEDGE, Javier MARTÍN-TORRES, Jun YU, 2020: A Hybrid Statistical-Dynamical Downscaling of Air Temperature over Scandinavia Using the WRF Model, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 57-74.  doi: 10.1007/s00376-019-9091-0
    [7] Jian SUN, Zhenxing SHEN, Yue ZHANG, Wenting DAI, Kun HE, Hongmei XU, Zhou ZHANG, Long CUI, Xuxiang LI, Yu HUANG, Junji CAO, 2021: Profiles and Source Apportionment of Nonmethane Volatile Organic Compounds in Winter and Summer in Xi’an, China, based on the Hybrid Environmental Receptor Model, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 116-131.  doi: 10.1007/s00376-020-0153-0
    [8] ZHANG Rong-Hua, 2015: A Hybrid Coupled Model for the Pacific Ocean-Atmosphere System. Part I: Description and Basic Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 301-318.  doi: 10.1007/s00376-014-3266-5
    [9] Junya HU, Rong-Hua ZHANG, Chuan GAO, 2019: A Hybrid Coupled Ocean-Atmosphere Model and Its Simulation of ENSO and Atmospheric Responses, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 643-657.  doi: 10.1007/s00376-019-8197-8
    [10] Lu ZHOU, Rong-Hua ZHANG, 2022: A Hybrid Neural Network Model for ENSO Prediction in Combination with Principal Oscillation Pattern Analyses, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 889-902.  doi: 10.1007/s00376-021-1368-4
    [11] Junya HU, Hongna WANG, Chuan GAO, Rong-Hua ZHANG, 2024: Different El Niño Flavors and Associated Atmospheric Teleconnections as Simulated in a Hybrid Coupled Model, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 864-880.  doi: 10.1007/s00376-023-3082-x
    [12] Chanh Q. KIEU, Da-Lin ZHANG, 2012: Is the Isentropic Surface Always Impermeable to the Potential Vorticity Substance?, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 29-35.  doi: 10.1007/s00376-011-0227-0
    [13] Li Xingsheng, Yang Shuowen, 1986: A MODEL STUDY OF THE NOCTURNAL BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 59-71.  doi: 10.1007/BF02680045
    [14] Min Dong, Qin Xu, 1996: A Sensitivity Study of Single Column Model, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 313-324.  doi: 10.1007/BF02656849
    [15] Qingyi LIU, Qian LIU, Guixing CHEN, 2020: Isentropic Analysis of Regional Cold Events over Northern China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 718-734.  doi: 10.1007/s00376-020-9226-3
    [16] Yueyue YU, Yafei LI, Rongcai REN, Ming CAI, Zhaoyong GUAN, Wei HUANG, 2022: An Isentropic Mass Circulation View on the Extreme Cold Events in the 2020/21 Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 643-657.  doi: 10.1007/s00376-021-1289-2
    [17] REN Rongcai, Ming CAI, 2006: Polar Vortex Oscillation Viewed in an Isentropic Potential Vorticity Coordinate, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 884-900.  doi: 10.1007/s00376-006-0884-6
    [18] Sun Shufen, Li Jingyang, 2001: A Sensitivity Study on Parameterization Scheme of Snow Internal and Interfacial Processes in Snow Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 910-928.
    [19] Lin Wenshi, Fong Soikun, Wu Chisheng, Ku Chimeng, Wang Anyu, Yang Yan, 2000: A Simulating Study on Resolvable-Scale Microphysical Parameterization in a Mesoscale Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 487-502.  doi: 10.1007/s00376-000-0038-1
    [20] LUO Dehai, YAO Yao, 2014: On the Blocking Flow Patterns in the Euro-Atlantic Sector: A Simple Model Study, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1181-1196.  doi: 10.1007/s00376-014-3197-1

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1998
Manuscript revised: 10 July 1998
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Development and Initial Tests of an Atmospheric Model Based on a Vertical Coordinate with a Smooth Transition from Terrain Following to Isentropic Coordinates

  • 1. Space Science and Engineering Center University of Wisconsin-Madison 1225 W. Dayton Street Madison, WI 53706, U.S.A,Space Science and Engineering Center University of Wisconsin-Madison 1225 W. Dayton Street Madison, WI 53706, U.S.A

Abstract: An atmospheric model (η model) is developed by modifying the UW θ-σ hybrid model. In the η model, the vertical coordinate transforms smoothly from terrain following to isentropic coordinates. The model is developed to capitalize on the inherent advantage of numerical modeling in isentropic coordinates and to eliminate the interface between the sigma planetary boundary layer and isentropic free atmosphere present in the UW θ-σ model. This formulation provides the potential for the data assimilation and the application of higher order schemes. This paper describes the structure of the η model and presents results from initial numerical experiments. The first experiment tests the capability of the η model for simulating the baroclinic development process. In the 48-hr numerical weather forecast experiment, the η model produces reasonable precipitation and synoptic fields at all levels which are similar to those from the UW θ-σ model. The second and third experiments test the capability of the η model for conserving 1) the joint distribution of isentropic potential vorticity (IPV) and proxy ozone and 2) equivalent potential temperature under frictionless and isentropic conditions. These experiments show that distributions of IPV and proxy ozone in the pure isentropic domain and the distributions of prognostic and diagnostic equivalent potential temperature in the model domain remain highly correlated to day 10.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return